Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 4.3 trang 7 sách bài tập Toán 12 chương trình Kết nối tri thức. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 4.3 trang 7 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
a) (int {left( {3x + 4} right)sqrt[3]{x}} dx); b) (int {frac{{{{left( {2x + 3} right)}^2}}}{{sqrt x }}} dx).
Đề bài
a) \(\int {\left( {3x + 4} \right)\sqrt[3]{x}} dx\);
b) \(\int {\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }}} dx\).
Phương pháp giải - Xem chi tiết
Ý a: Biến đổi biểu thức dưới dấu tích phân để xuất hiện các đa thức dạng lũy thừa của \(x\).
Sau đó sử dụng công thức nguyên hàm của hàm lũy thừa.
Ý b: Biến đổi biểu thức dưới dấu tích phân để xuất hiện các đa thức dạng lũy thừa của \(x\).
Sau đó sử dụng công thức nguyên hàm của hàm lũy thừa.
Lời giải chi tiết
a) Ta có \(\left( {3x + 4} \right)\sqrt[3]{x} = 3x\sqrt[3]{x} + 4\sqrt[3]{x} = 3{x^{\frac{4}{3}}} + 4{x^{\frac{1}{3}}}\).
Do đó \(\int {\left( {3x + 4} \right)\sqrt[3]{x}} dx = \int {\left( {3{x^{\frac{4}{3}}} + 4{x^{\frac{1}{3}}}} \right)dx = } 3\int {{x^{\frac{4}{3}}}dx + } 4\int {{x^{\frac{1}{3}}}dx} \)
\( = 3\frac{{{x^{\frac{7}{3}}}}}{{\left( {\frac{7}{3}} \right)}} + 4\frac{{{x^{\frac{4}{3}}}}}{{\left( {\frac{4}{3}} \right)}} + C = \frac{9}{7}{x^2}\sqrt[3]{x} + 3x\sqrt[3]{x} + C = \left( {\frac{9}{7}{x^2} + 3x} \right)\sqrt[3]{x} + C.\)
b) Ta có \(\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }} = \frac{{4{x^2} + 12x + 9}}{{\sqrt x }} = 4x\sqrt x + 12\sqrt x + \frac{9}{{\sqrt x }} = 4{x^{\frac{3}{2}}} + 12{x^{\frac{1}{2}}} + \frac{9}{{\sqrt x }}\).
Do đó \(\int {\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }}} dx = \int {\left( {4{x^{\frac{3}{2}}} + 12{x^{\frac{1}{2}}} + \frac{9}{{\sqrt x }}} \right)dx = } 4\int {{x^{\frac{3}{2}}}dx + } 12\int {{x^{\frac{1}{2}}}dx} + 9\int {\frac{1}{{\sqrt x }}dx} \)
\( = 4 \cdot \frac{{{x^{\frac{5}{2}}}}}{{\left( {\frac{5}{2}} \right)}} + 12 \cdot \frac{{{x^{\frac{3}{2}}}}}{{\left( {\frac{3}{2}} \right)}} + 9 \cdot 2\sqrt x + C = \frac{8}{5}{x^2}\sqrt x + 8x\sqrt x + 18\sqrt x + C = \left( {\frac{8}{5}{x^2} + 8x + 18} \right)\sqrt x + C.\)
Bài 4.3 trang 7 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.
Trước khi bắt đầu giải bài tập, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài 4.3 trang 7, học sinh cần xác định hàm số cần tìm đạo hàm, các điểm cần tính đạo hàm, và các điều kiện ràng buộc (nếu có).
Sau khi đã xác định rõ yêu cầu của bài toán, học sinh cần áp dụng các quy tắc tính đạo hàm phù hợp để tìm đạo hàm của hàm số. Các quy tắc tính đạo hàm cơ bản bao gồm:
Giả sử bài 4.3 yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1. Ta có thể áp dụng quy tắc đạo hàm của hàm số lũy thừa và quy tắc đạo hàm của tổng để tìm đạo hàm của f(x) như sau:
f'(x) = (x3)' + (2x2)' - (5x)' + (1)' = 3x2 + 4x - 5 + 0 = 3x2 + 4x - 5
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Để hiểu sâu hơn về đạo hàm, học sinh có thể tham khảo thêm các tài liệu sau:
Để củng cố kiến thức về đạo hàm, học sinh có thể tự giải các bài tập sau:
Bài 4.3 trang 7 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và vận dụng các kiến thức về đạo hàm để giải quyết các bài toán cụ thể. Hy vọng rằng với lời giải chi tiết và các lưu ý quan trọng trong bài viết này, bạn sẽ tự tin hơn trong việc học Toán 12.