Bài 1.23 trang 19 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.23 trang 19 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau: a) (y = frac{{{x^2} - x - 5}}{{x - 2}}); b) (y = frac{{3{x^2} + 8x - 2}}{{x + 3}}).
Đề bài
Tìm tiệm cận đứng và tiệm cận xiên của đồ thị các hàm số sau:
a) \(y = \frac{{{x^2} - x - 5}}{{x - 2}}\);
b) \(y = \frac{{3{x^2} + 8x - 2}}{{x + 3}}\).
Phương pháp giải - Xem chi tiết
Sử dụng định nghĩa tiệm cận xiên, đứng của đồ thị hàm số, tính các giới hạn để tìm các tiệm cận đó.
Lời giải chi tiết
a) Ta có \(y = x + 1 - \frac{3}{{x - 2}}\). Khi đó \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {x + 1 - \frac{3}{{x - 2}}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1 - \frac{3}{{x - 2}}} \right) = - \infty \).
Do đó đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {x + 1 - \frac{3}{{x - 2}}} \right) - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0\). Do đó đường thẳng \(y = x + 1\) là tiệm cận xiên của đồ thị hàm số.
b) Ta có \(y = 3x - 1 + \frac{1}{{x + 3}}.\)\(\mathop {\lim }\limits_{x \to - {3^ + }} \left( {3x - 1 + \frac{1}{{x + 3}}} \right) = + \infty \); \(\mathop {\lim }\limits_{x \to - {3^ - }} \left( {3x - 1 + \frac{1}{{x + 3}}} \right) = - \infty \).
Do đó đường thẳng \(x = - 3\) là tiệm cận đứng của đồ thị hàm số.
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {3x - 1 + \frac{1}{{x + 3}}} \right) - \left( {3x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{1}{{x + 3}}} \right) = 0\). Do đó đường thẳng \(y = 3x - 1\) là tiệm cận xiên của đồ thị hàm số.
Bài 1.23 trang 19 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:
Dưới đây là đề bài và lời giải chi tiết bài 1.23 trang 19 Sách bài tập Toán 12 - Kết nối tri thức:
Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.
Sử dụng quy tắc đạo hàm của hàm đa thức, ta có:
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Ta xét dấu của f'(x) trên các khoảng:
Vậy:
Kết luận: Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.
Bài tập này là một ví dụ điển hình về việc ứng dụng đạo hàm để tìm cực trị của hàm số. Việc tìm cực trị có ý nghĩa quan trọng trong nhiều lĩnh vực, như:
Để hiểu sâu hơn về đạo hàm và ứng dụng của nó, các em học sinh nên:
Giaitoan.edu.vn hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về bài 1.23 trang 19 Sách bài tập Toán 12 - Kết nối tri thức và tự tin hơn trong quá trình học tập.
Các em có thể tham khảo thêm các bài tập tương tự về đạo hàm và cực trị của hàm số trong Sách bài tập Toán 12 - Kết nối tri thức và các tài liệu học tập khác.