Logo Header
  1. Môn Toán
  2. Giải bài 4.8 trang 8 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.8 trang 8 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.8 trang 8 Sách bài tập Toán 12 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 4.8 trang 8 sách bài tập Toán 12 chương trình Kết nối tri thức. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 4.8 trang 8 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t=0 là thời điểm viên đạn được bắn lên) cho bởi (vleft( t right) = 150 - 9,8t) (m/s). Tìm độ cao của viên đạn (tính từ mặt đất): a) Sau (t = 3) giây; b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét).

Đề bài

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t=0 là thời điểm viên đạn được bắn lên) cho bởi \(v\left( t \right) = 150 - 9,8t\) (m/s).

Tìm độ cao của viên đạn (tính từ mặt đất):

a) Sau \(t = 3\) giây;

b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét).

Phương pháp giải - Xem chi tiếtGiải bài 4.8 trang 8 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Độ cao \(h\left( t \right)\) của viên đạn tại thời điểm \(t\) là một nguyên hàm của hàm vận tốc \(v\left( t \right)\).

Tìm \(h\left( t \right)\) sau đó tính \(h\left( 3 \right)\).

Ý b: Tìm giá trị lớn nhất của \(h\left( t \right)\) với \(t \ge 0\). Lập bảng biến thiên để tìm.

Lời giải chi tiết

a) Độ cao \(h\left( t \right)\) của viên đạn tại thời điểm \(t\) là một nguyên hàm của hàm vận tốc \(v\left( t \right)\).

Ta có \(h\left( t \right) = \int {\left( {150 - 9,8t} \right)} dt = 150t - 4,9{t^2} + C\).

Do \(t = 0\) là thời điểm viên đạn được bắn lên nên \(h\left( 0 \right) = 0\).

Suy ra \(150 \cdot 0 - 4,9 \cdot {0^2} + C = 0 \Leftrightarrow C = 0 \Leftrightarrow \)\(h\left( t \right) = 150t - 4,9{t^2}\).

Độ cao của viên đạn sau 3 giây là \(h\left( 3 \right) = 150 \cdot 3 - 4,9 \cdot {3^2} = 405,9\) (m).

b) Độ cao lớn nhất của viên đạn là giá trị lớn nhất của hàm số \(h\left( t \right) = 150t - 4,9{t^2}\) với \(t \ge 0\).

Ta có \(h'\left( t \right) = 150 - 9,8t\) suy ra \(h'\left( t \right) = 0 \Leftrightarrow 150 - 9,8t = 0 \Leftrightarrow t = \frac{{750}}{{49}}\).

Ta lập bảng biến thiên

Giải bài 4.8 trang 8 sách bài tập toán 12 - Kết nối tri thức 2

Từ bảng biến thiên suy ra \(\mathop {\max }\limits_{\left[ {0; + \infty } \right)} h\left( t \right) = h\left( {\frac{{750}}{{49}}} \right) = \frac{{56250}}{{49}} \approx 1147,96\).

Vậy viên đạt đạt độ cao lớn nhất khoảng \(1147,96\) m tại thời điểm \(t = \frac{{750}}{{49}}\) giây.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4.8 trang 8 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4.8 trang 8 Sách bài tập Toán 12 - Kết nối tri thức: Phân tích chi tiết và hướng dẫn giải

Bài 4.8 trang 8 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

Nội dung bài tập 4.8 trang 8

Bài tập 4.8 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số, tức là đạo hàm của đạo hàm cấp nhất.
  • Ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để tìm nghiệm của phương trình, ví dụ như phương trình f'(x) = 0.
  • Khảo sát hàm số: Sử dụng đạo hàm để khảo sát tính đơn điệu, cực trị của hàm số.

Hướng dẫn giải bài 4.8 trang 8

Để giải bài 4.8 trang 8 sách bài tập Toán 12 Kết nối tri thức hiệu quả, bạn cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ các định nghĩa, định lý, quy tắc về đạo hàm.
  2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài.
  3. Sử dụng các công cụ hỗ trợ: Có thể sử dụng máy tính cầm tay hoặc các phần mềm toán học để kiểm tra kết quả.
  4. Phân tích bài toán: Đọc kỹ đề bài, xác định rõ yêu cầu và các dữ kiện đã cho.
  5. Lập kế hoạch giải: Xác định các bước cần thực hiện để giải bài toán.

Ví dụ minh họa giải bài 4.8 trang 8 (giả định)

Bài toán: Tính đạo hàm của hàm số y = x3 + 2x2 - 5x + 1.

Giải:

Sử dụng quy tắc tính đạo hàm của tổng, hiệu, tích, thương và quy tắc lũy thừa, ta có:

y' = 3x2 + 4x - 5.

Vậy, đạo hàm của hàm số y = x3 + 2x2 - 5x + 1 là y' = 3x2 + 4x - 5.

Các lưu ý khi giải bài tập về đạo hàm

  • Chú ý đến các quy tắc tính đạo hàm: Đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  • Kiểm tra lại kết quả: Đảm bảo rằng kết quả tính toán là chính xác.
  • Sử dụng đơn vị đo lường phù hợp: Nếu bài toán có liên quan đến các đại lượng vật lý, hãy sử dụng đơn vị đo lường phù hợp.
  • Hiểu rõ ý nghĩa của đạo hàm: Đạo hàm biểu thị tốc độ thay đổi của hàm số.

Tài liệu tham khảo hữu ích

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Kết nối tri thức: Cung cấp kiến thức cơ bản và bài tập thực hành.
  • Sách bài tập Toán 12 - Kết nối tri thức: Cung cấp các bài tập nâng cao và bài tập tự luyện.
  • Các trang web học toán online: Giaitoan.edu.vn, Vietjack.com, Hoc24.vn,...
  • Các video bài giảng trên YouTube: Tìm kiếm các video bài giảng về đạo hàm để hiểu rõ hơn về kiến thức.

Kết luận

Bài 4.8 trang 8 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong việc giải bài tập và đạt kết quả tốt trong các kỳ thi.

Tài liệu, đề thi và đáp án Toán 12