Logo Header
  1. Môn Toán
  2. Giải bài 3.6 trang 66 sách bài tập toán 12 - Kết nối tri thức

Giải bài 3.6 trang 66 sách bài tập toán 12 - Kết nối tri thức

Giải bài 3.6 trang 66 Sách bài tập Toán 12 - Kết nối tri thức

Bài 3.6 trang 66 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.6 trang 66 sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Chiều cao của 20 cây xoan giống (đơn vị là cm) được cho như sau: 15 19 24 31 27 23 18 19 25 29 23 33 34 27 31 24 27 21 29 30. a) Tính độ lệch chuẩn ({s_g}) của mẫu số liệu. b) Hoàn thiện bảng số liệu ghép nhóm sau và tính độ lệch chuẩn ({s_n}) của mẫu số liệu ghép nhóm này: c) Nên dùng giá trị ({s_g}) hay ({s_n}) để đo mức độ phân tán về chiều cao của 20 cây xoan giống này?

Đề bài

Chiều cao của 20 cây xoan giống (đơn vị là cm) được cho như sau:

15

19

24

31

27

23

18

19

25

29

23

33

34

27

31

24

27

21

29

 30.

a) Tính độ lệch chuẩn \({s_g}\) của mẫu số liệu.

b) Hoàn thiện bảng số liệu ghép nhóm sau và tính độ lệch chuẩn \({s_n}\) của mẫu số liệu ghép nhóm này:

Giải bài 3.6 trang 66 sách bài tập toán 12 - Kết nối tri thức 1

c) Nên dùng giá trị \({s_g}\) hay \({s_n}\) để đo mức độ phân tán về chiều cao của 20 cây xoan giống này?

Phương pháp giải - Xem chi tiếtGiải bài 3.6 trang 66 sách bài tập toán 12 - Kết nối tri thức 2

Ý a: Tính từng độ lệch giữa giá trị của mỗi cây và giá trị trung bình, tính tổng bình phương các độ lệch đó và chia cho cỡ mẫu n, sau đó lấy căn bậc hai kết quả này.

Ý b: Điền thông tin còn thiếu vào bảng, chọn giá trị đại diện cho mỗi nhóm số liệu sau đó

tính giá trị trung bình và độ lệch chuẩn của mẫu số liệu ghép nhóm bằng công thức đã học.

Ý c: Trả lời và giải thích về ý nghĩa của độ lệch chuẩn trong mẫu số liệu gốc và mẫu số liệu ghép nhóm.

Lời giải chi tiết

a) Ta có giá trị trung bình của mẫu là

\(\begin{array}{l}\overline x = \frac{{15 + 19 + 24 + 31 + 27 + 23 + 18 + 19 + 25 + 29 + 23 + 33 + 34 + 27 + 31 + 24 + 27 + 21 + 29 + 30}}{{20}}\\{\rm{ }} = 25,45\end{array}\)

Do đó độ lệch chuẩn \({s_g}\) của mẫu số liệu là

\(\begin{array}{l}{s_g} = \sqrt {\frac{1}{{20}}\left[ \begin{array}{l}{\left( {15 - 25,45} \right)^2} + {\left( {19 - 25,45} \right)^2} + {\left( {24 - 25,45} \right)^2} + {\left( {31 - 25,45} \right)^2} + {\left( {27 - 25,45} \right)^2}\\ + {\left( {23 - 25,45} \right)^2} + {\left( {18 - 25,45} \right)^2} + {\left( {19 - 25,45} \right)^2} + {\left( {25 - 25,45} \right)^2} + {\left( {29 - 25,45} \right)^2}\\ + {\left( {23 - 25,45} \right)^2} + {\left( {33 - 25,45} \right)^2} + {\left( {34 - 25,45} \right)^2} + {\left( {27 - 25,45} \right)^2} + {\left( {31 - 25,45} \right)^2}\\ + {\left( {24 - 25,45} \right)^2} + {\left( {27 - 25,45} \right)^2} + {\left( {21 - 25,45} \right)^2} + {\left( {29 - 25,45} \right)^2} + {\left( {30 - 25,45} \right)^2}\end{array} \right]} \\ = \sqrt {\frac{1}{{20}} \cdot 528,95} \approx 5,14.\end{array}\)

b) Ta có bảng số liệu ghép nhóm:

Giải bài 3.6 trang 66 sách bài tập toán 12 - Kết nối tri thức 3

Chọn giá trị đại diện cho mỗi nhóm số liệu, ta có bảng sau:

Giải bài 3.6 trang 66 sách bài tập toán 12 - Kết nối tri thức 4

Chiều cao trung bình của mỗi cây trong mẫu dữ liệu ghép nhóm là

\(\overline x = \frac{{17,5 \cdot 4 + 22,5 \cdot 5 + 27,5 \cdot 6 + 32,5 \cdot 5}}{{20}} = 25,5.\)

Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là

\({s_n} = \sqrt {\frac{1}{{20}}\left( {4 \cdot {{17,5}^2} + 5 \cdot {{22,5}^2} + 6 \cdot {{27,5}^2} + 4 \cdot {{32,5}^2}} \right) - {{25,5}^2}} \approx 5,34.\)

c) Nên dùng giá trị \({s_g}\) để đo mức độ phân tán của 20 cây xoan giống vì nó tính toán mức độ phân tán tổng thể trong toàn bộ dữ liệu mà không làm mất thông tin chi tiết.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 3.6 trang 66 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 3.6 trang 66 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 3.6 trang 66 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc cộng, trừ, nhân, chia, đạo hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit)

Dưới đây là đề bài và lời giải chi tiết bài 3.6 trang 66 sách bài tập Toán 12 - Kết nối tri thức:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm f'(x):
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm f'(x) = 0:
  4. 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Lập bảng xét dấu f'(x):
  6. x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  7. Kết luận:
  8. Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.

    Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý:

  • Để tìm các điểm cực trị của hàm số, ta cần tìm các điểm làm đạo hàm bậc nhất bằng 0 và xét dấu đạo hàm bậc nhất để xác định tính đơn điệu của hàm số tại các điểm đó.
  • Nếu đạo hàm bậc nhất đổi dấu từ dương sang âm tại một điểm, thì điểm đó là điểm cực đại của hàm số.
  • Nếu đạo hàm bậc nhất đổi dấu từ âm sang dương tại một điểm, thì điểm đó là điểm cực tiểu của hàm số.

Các bài tập tương tự

Để củng cố kiến thức về đạo hàm và các ứng dụng của đạo hàm, các em có thể tham khảo thêm các bài tập tương tự sau:

  • Bài 3.7 trang 66 sách bài tập Toán 12 - Kết nối tri thức
  • Bài 3.8 trang 67 sách bài tập Toán 12 - Kết nối tri thức
  • Các bài tập về đạo hàm trong các đề thi thử THPT Quốc gia

Giaitoan.edu.vn hy vọng rằng lời giải chi tiết bài 3.6 trang 66 sách bài tập Toán 12 - Kết nối tri thức sẽ giúp các em học sinh hiểu rõ hơn về đạo hàm và tự tin làm bài tập. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 12