Bài 2.20 trang 49 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.20 trang 49, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong không gian (Oxyz), cho hình lăng trụ tam giác (OAB.O'A'B') có (Aleft( {1;1;7} right)), (Bleft( {2;4;7} right)) và điểm (O') thuộc tia (Ox) sao cho (OO' = 3). a) Tìm tọa độ của vectơ (overrightarrow {OO'} ). b) Tìm tọa độ các điểm (O',A') và (B').
Đề bài
Trong không gian \(Oxyz\), cho hình lăng trụ tam giác \(OAB.O'A'B'\) có \(A\left( {1;1;7} \right)\), \(B\left( {2;4;7} \right)\) và điểm \(O'\) thuộc tia \(Ox\) sao cho \(OO' = 3\).
a) Tìm tọa độ của vectơ \(\overrightarrow {OO'} \).
b) Tìm tọa độ các điểm \(O',A'\) và \(B'\).
Phương pháp giải - Xem chi tiết
Ý a: Tọa độ vectơ \(\overrightarrow {OO'} \) là tọa độ của \(O'\).
Ý b: Từ các yếu tố song song trong hình lăng trụ tam giác, tìm được các cặp vectơ bằng nhau, mỗi cặp được chọn phù hợp, ta giải một phương trình để tìm được tọa độ một điểm mà đề yêu cầu.
Lời giải chi tiết
a) Vì điểm \(O'\) thuộc tia \(Ox\) nên tung độ và cao độ của \(O'\) đều là 0, mà \(OO' = 3\) do đó \(O'\left( {3;0;0} \right)\). Suy ra \(\overrightarrow {OO'} = \left( {3;0;0} \right)\).
b) Ta có \(O'\left( {3;0;0} \right)\). Giả sử \(A'\left( {a;b;c} \right)\) khi đó \(\overrightarrow {O'A'} = \left( {a - 3;b;c} \right)\).
Vì tứ giác \(OAA'O'\) là hình bình hành nên \(\overrightarrow {OA} = \overrightarrow {O'A'} \) suy ra \(\left\{ \begin{array}{l}1 = a - 3\\1 = b\\7 = c\end{array} \right. \Leftrightarrow a = 4,b = 1,c = 7\).
Do đó \(A'\left( {4;1;7} \right)\). Tương tự giả sử \(B'\left( {c;d;e} \right)\) khi đó \(\overrightarrow {O'B'} = \left( {c - 3;d;e} \right)\).
Do \(\overrightarrow {OB} = \overrightarrow {O'B'} \) suy ra \(\left\{ \begin{array}{l}2 = c - 3\\4 = d\\7 = e\end{array} \right. \Leftrightarrow c = 5,d = 4,e = 7\). Do đó \(B'\left( {5;4;7} \right)\).
Vậy \(O'\left( {3;0;0} \right)\), \(A'\left( {4;1;7} \right)\) và \(B'\left( {5;4;7} \right)\).
Bài 2.20 trang 49 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Nội dung bài toán: (Giả sử nội dung bài toán là: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)
f'(x) = 3x2 - 6x
3x2 - 6x = 0
3x(x - 2) = 0
=> x = 0 hoặc x = 2
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | NB | ĐC | TC |
(NB: Nghịch biến, ĐC: Đồng biến, TC: Tiếp điểm)
Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Ngoài bài 2.20, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 - Kết nối tri thức để rèn luyện kỹ năng giải toán. Việc nắm vững kiến thức về đạo hàm là rất quan trọng để giải quyết các bài toán liên quan đến tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục môn Toán. Hãy truy cập website của chúng tôi để tìm kiếm lời giải cho các bài tập khác và nâng cao kiến thức Toán học của bạn.
Đạo hàm được ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống, như vật lý, kinh tế, kỹ thuật,... Ví dụ, trong vật lý, đạo hàm được sử dụng để tính vận tốc, gia tốc của một vật chuyển động. Trong kinh tế, đạo hàm được sử dụng để tính chi phí biên, doanh thu biên,...
Bài 2.20 trang 49 sách bài tập Toán 12 - Kết nối tri thức là một bài tập điển hình về ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết này, các em học sinh đã hiểu rõ phương pháp giải và tự tin làm bài tập. Chúc các em học tập tốt!