Bài 5.15 trang 31 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.15 trang 31 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Trong không gian Oxyz, tính góc giữa hai đường thẳng: \(\Delta :\frac{{x - 2}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\) và \(\Delta ':\left\{ \begin{array}{l}x = 3 + 2t\\y = - 1 + t\\z = 3 + t\end{array} \right.\)
Đề bài
Trong không gian Oxyz, tính góc giữa hai đường thẳng:
\(\Delta :\frac{{x - 2}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\) và \(\Delta ':\left\{ \begin{array}{l}x = 3 + 2t\\y = - 1 + t\\z = 3 + t\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Xác định vectơ chỉ phương của hai đường thẳng, áp dụng công thức tính cosin của hai đường thẳng trong không gian. Từ đó ta tìm góc.
Lời giải chi tiết
Vectơ chỉ phương của đường thẳng \(\Delta \) là \(\overrightarrow u = \left( {1; - 1;2} \right)\), vectơ chỉ phương của đường thẳng \(\Delta '\) là \(\overrightarrow {u'} = \left( {2;1;1} \right)\).
Ta có \(\cos \left( {\Delta ,\Delta '} \right) = \frac{{\left| {\overrightarrow u \cdot \overrightarrow {u'} } \right|}}{{\left| {\overrightarrow u } \right| \cdot \left| {\overrightarrow {u'} } \right|}} = \frac{{2 - 1 + 2}}{{\sqrt 6 \cdot \sqrt 6 }} = \frac{1}{2}\). Suy ra \(\left( {\Delta ,\Delta '} \right) = {60^ \circ }\).
Bài 5.15 trang 31 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:
Nội dung bài tập 5.15:
Bài tập yêu cầu tìm đạo hàm của hàm số cho trước. Thông thường, các hàm số trong bài tập này sẽ có dạng phức tạp, đòi hỏi học sinh phải áp dụng linh hoạt các quy tắc tính đạo hàm.
Lời giải chi tiết:
Để giải bài tập này, ta thực hiện các bước sau:
Ví dụ minh họa:
Giả sử hàm số cần tìm đạo hàm là: f(x) = (x2 + 1) * sin(x)
Ta áp dụng quy tắc nhân để tính đạo hàm:
f'(x) = (x2 + 1)' * sin(x) + (x2 + 1) * sin'(x)
f'(x) = 2x * sin(x) + (x2 + 1) * cos(x)
Vậy, đạo hàm của hàm số f(x) là: f'(x) = 2x * sin(x) + (x2 + 1) * cos(x)
Lưu ý:
Mở rộng:
Ngoài bài tập 5.15, Sách bài tập Toán 12 - Kết nối tri thức còn rất nhiều bài tập khác về đạo hàm. Các em học sinh nên làm đầy đủ các bài tập để nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Ứng dụng của đạo hàm:
Đạo hàm có rất nhiều ứng dụng trong thực tế, như:
Tổng kết:
Bài 5.15 trang 31 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và dễ hiểu trên đây, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục tri thức. Chúc các em học tập tốt!
Hàm số | Đạo hàm |
---|---|
f(x) = xn | f'(x) = nxn-1 |
f(x) = sin(x) | f'(x) = cos(x) |
f(x) = cos(x) | f'(x) = -sin(x) |