Logo Header
  1. Môn Toán
  2. Giải bài 2.25 trang 54 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.25 trang 54 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.25 trang 54 Sách bài tập Toán 12 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn cách giải bài 2.25 trang 54 một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.

Trong không gian (Oxyz), cho ba vectơ (overrightarrow a = left( {3;0;4} right),{rm{ }}overrightarrow {rm{b}} {rm{ = }}left( {2;7;7} right)) và (overrightarrow c = left( {2;7;2} right)). a) Tìm tọa độ của các vectơ (overrightarrow a - overrightarrow b + overrightarrow c ) và (2overrightarrow a + 3overrightarrow b - 4overrightarrow c ). b) Tính các tích vô hướng (left( { - overrightarrow a } right) cdot overrightarrow b ) và (left( {3overrightarrow a }

Đề bài

Trong không gian \(Oxyz\), cho ba vectơ \(\overrightarrow a = \left( {3;0;4} \right),{\rm{ }}\overrightarrow {\rm{b}} {\rm{ = }}\left( {2;7;7} \right)\) và \(\overrightarrow c = \left( {2;7;2} \right)\).

a) Tìm tọa độ của các vectơ \(\overrightarrow a - \overrightarrow b + \overrightarrow c \) và \(2\overrightarrow a + 3\overrightarrow b - 4\overrightarrow c \).

b) Tính các tích vô hướng \(\left( { - \overrightarrow a } \right) \cdot \overrightarrow b \) và \(\left( {3\overrightarrow a } \right) \cdot \overrightarrow c \).

c) Tính côsin của các góc \(\left( {\overrightarrow a ,\overrightarrow b } \right)\) và \(\left( {\overrightarrow a ,\overrightarrow c } \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 2.25 trang 54 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Thực hiện phép toán cộng và trừ đối với các vectơ.

Ý b: Biến đổi biểu thức và tính tích vô hướng hai vectơ bằng công thức tọa độ.

Ý c: Tính côsin theo công thức liên hệ với tích vô hướng hai vectơ.

Lời giải chi tiết

a) Ta có \(\overrightarrow a - \overrightarrow b + \overrightarrow c = \left( {3 - 2 + 2;0 - 7 + 7;4 - 7 + 2} \right) = \left( {3;0; - 1} \right)\).

\(2\overrightarrow a + 3\overrightarrow b - 4\overrightarrow c = \left( {6 + 6 - 8;0 + 21 - 28;8 + 21 - 8} \right) = \left( {4; - 7;21} \right)\).

b) Ta có:

\(\left( { - \overrightarrow a } \right) \cdot \overrightarrow b = - \left( {\overrightarrow a \cdot \overrightarrow b } \right) = - \left( {6 + 0 + 28} \right) = - 34\); \(\left( {3\overrightarrow a } \right) \cdot \overrightarrow c = 3\left( {\overrightarrow a \cdot \overrightarrow c } \right) = 3\left( {6 + 0 + 8} \right) = 42\).

c) Từ ý b ta có \(\overrightarrow a \cdot \overrightarrow b = 34\) và \(\overrightarrow a \cdot \overrightarrow c = 14\).

Ta có \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a \cdot \overrightarrow b }}{{\left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right|}} = \frac{{34}}{{\sqrt {{3^2} + {4^2}} \cdot \sqrt {{2^2} + {7^2} + {7^2}} }} = \frac{{34}}{{5 \cdot \sqrt {102} }} = \frac{{\sqrt {102} }}{{15}}\);

\(\cos \left( {\overrightarrow a ,\overrightarrow c } \right) = \frac{{\overrightarrow a \cdot \overrightarrow c }}{{\left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow c } \right|}} = \frac{{14}}{{\sqrt {{3^2} + {4^2}} \cdot \sqrt {{2^2} + {7^2} + {2^2}} }} = \frac{{14}}{{5\sqrt {57} }}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2.25 trang 54 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2.25 trang 54 Sách bài tập Toán 12 - Kết nối tri thức: Phân tích chi tiết và hướng dẫn giải

Bài 2.25 trang 54 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường liên quan đến việc tìm đạo hàm của hàm số, xét tính đơn điệu của hàm số, và tìm cực trị của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức đạo hàm cơ bản.

I. Đề bài bài 2.25 trang 54 Sách bài tập Toán 12 - Kết nối tri thức

(Nội dung đề bài sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) có đạo hàm f'(x) = (x-1)(x+2). Tìm các điểm cực trị của hàm số.)

II. Phương pháp giải bài tập về đạo hàm và cực trị

  1. Xác định tập xác định của hàm số: Kiểm tra xem hàm số có những điểm nào không xác định hay không.
  2. Tính đạo hàm cấp một: Sử dụng các quy tắc đạo hàm để tính đạo hàm f'(x) của hàm số f(x).
  3. Tìm các điểm cực trị: Giải phương trình f'(x) = 0 để tìm các điểm nghi ngờ là cực trị.
  4. Xác định loại cực trị: Sử dụng một trong các phương pháp sau:
    • Phương pháp xét dấu đạo hàm: Xét dấu của f'(x) trên các khoảng xác định bởi các điểm nghi ngờ là cực trị.
    • Phương pháp đạo hàm cấp hai: Tính đạo hàm cấp hai f''(x) và xét dấu của f''(x) tại các điểm nghi ngờ là cực trị.
  5. Kết luận: Xác định các điểm cực đại, cực tiểu và giá trị tương ứng.

III. Lời giải chi tiết bài 2.25 trang 54 Sách bài tập Toán 12 - Kết nối tri thức

(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng và kết quả cuối cùng. Ví dụ:

Giải:

1. Tập xác định của hàm số là R.

2. Đạo hàm cấp một: f'(x) = (x-1)(x+2) = x2 + x - 2

3. Giải phương trình f'(x) = 0: x2 + x - 2 = 0 => x = 1 hoặc x = -2

4. Xét dấu đạo hàm:

x-∞-21+∞
f'(x)+-++
f(x)NBĐBNCNB

5. Kết luận: Hàm số đạt cực đại tại x = -2 với giá trị f(-2) = ... và đạt cực tiểu tại x = 1 với giá trị f(1) = ...

)

IV. Lưu ý khi giải bài tập về đạo hàm và cực trị

  • Luôn kiểm tra tập xác định của hàm số trước khi tính đạo hàm.
  • Sử dụng đúng các quy tắc đạo hàm để tránh sai sót.
  • Khi xét dấu đạo hàm, cần xác định đúng các khoảng xác định bởi các điểm nghi ngờ là cực trị.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

V. Bài tập tương tự

Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 - Kết nối tri thức hoặc trên các trang web học toán online khác.

Hy vọng bài giải này sẽ giúp bạn hiểu rõ hơn về cách giải bài 2.25 trang 54 sách bài tập Toán 12 - Kết nối tri thức. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12