Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 4.7 trang 8 sách bài tập, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, đồng thời giúp bạn hiểu rõ bản chất của từng bài toán. Hãy cùng bắt đầu với bài 4.7 trang 8 nhé!
Tìm: a) (int {left( {x + {{sin }^2}frac{x}{2}} right)} dx); b) (int {{{left( {2tan x + cot x} right)}^2}} {rm{ }}dx).
Đề bài
Tìm:
a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx\);
b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}} {\rm{ }}dx\).
Phương pháp giải - Xem chi tiết
Ý a: Sử dụng công thức hạ bậc cho \({\sin ^2}\frac{x}{2}\), áp dụng các công thức tính nguyên hàm cơ bản cho hàm lượng giác và các hàm còn lại.
Ý b: Khai triển, rút gọn biểu thức dưới dấu căn bằng các công thức lượng giác đã học đưa hàm số về dạng có thể áp dụng trực tiếp công thức nguyên hàm cơ bản.
Gợi ý: \({\tan ^2}x = 1 + \frac{1}{{{{\cos }^2}x}};{\rm{ co}}{{\rm{t}}^2}x = 1 + \frac{1}{{{{\sin }^2}x}}\).
Lời giải chi tiết
a) Ta có \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx = \int x dx + \int {\frac{{1 - \cos x}}{2}} dx = \frac{{{x^2}}}{2} + \frac{x}{2} - \frac{{\sin x}}{2} + C = \frac{{{x^2} + x - \sin x}}{2} + C\).
b) Ta có \({\left( {2\tan x + \cot x} \right)^2} = 4{\tan ^2}x + 4 \cdot \tan x \cdot \cot x + {\cot ^2}x\)\( = 4 \cdot \left( {1 + \frac{1}{{{{\cos }^2}x}}} \right) + 4 \cdot 1 + \left( {1 + \frac{1}{{{{\sin }^2}x}}} \right)\)
\( = 9 + \frac{4}{{{{\cos }^2}x}} + \frac{1}{{{{\sin }^2}x}}\).
Do đó\(\int {{{\left( {2\tan x + \cot x} \right)}^2}} dx = \int {\left( {9 + \frac{4}{{{{\cos }^2}x}} + \frac{1}{{{{\sin }^2}x}}} \right)} dx\)
\( = 9\int {dx} + 4\int {\frac{1}{{{{\cos }^2}x}}} dx + \int {\frac{1}{{{{\sin }^2}x}}} dx = 9x + 4\tan x - \cot x + C\).
Bài 4.7 trang 8 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài toán này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các khái niệm và công thức liên quan đến đạo hàm, bao gồm đạo hàm của hàm số tại một điểm, đạo hàm của hàm số trên một khoảng, và các quy tắc tính đạo hàm.
Bài toán 4.7 thường xoay quanh việc tìm đạo hàm của một hàm số cụ thể, hoặc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số, hoặc các bài toán tối ưu hóa. Để giải quyết bài toán này, chúng ta cần thực hiện các bước sau:
Giả sử bài toán 4.7 yêu cầu tìm đạo hàm của hàm số f(x) = x2 + 2x + 1. Chúng ta sẽ thực hiện như sau:
Ngoài bài toán 4.7, còn rất nhiều bài tập tương tự yêu cầu vận dụng kiến thức về đạo hàm. Một số dạng bài tập phổ biến bao gồm:
Để giải quyết các bài tập này, bạn cần nắm vững các công thức đạo hàm cơ bản và luyện tập thường xuyên. Ngoài ra, việc sử dụng các công cụ hỗ trợ tính đạo hàm trực tuyến cũng có thể giúp bạn kiểm tra lại kết quả và tiết kiệm thời gian.
Bài 4.7 trang 8 sách bài tập Toán 12 Kết nối tri thức là một bài toán quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn đã có thể tự tin giải quyết bài toán này và các bài toán tương tự. Chúc bạn học tập tốt!