Bài 1.33 trang 25 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.33 trang 25 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau: a) (y = frac{{{x^2} - 4x + 8}}{{x - 2}}); b) (y = frac{{2{x^2} + 3x - 5}}{{x + 1}}).
Đề bài
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) \(y = \frac{{{x^2} - 4x + 8}}{{x - 2}}\);
b) \(y = \frac{{2{x^2} + 3x - 5}}{{x + 1}}\).
Phương pháp giải - Xem chi tiết
+ Tìm tập xác định của hàm số.
+ Khảo sát sự biến thiên của hàm số: Tính đạo hàm, tìm các khoảng đồng biến, nghịch biến của đồ thị, tìm các điểm cực trị, cực trị, tiệm cận, ghi kết quả tìm được vào bảng biến thiên.
+ Vẽ đồ thị dựa vào bảng biến thiên, khi vẽ lưu ý đến tính đối xứng, tọa độ giao điểm với các trục.
Lời giải chi tiết
a) Tập xác định: \(\mathbb{R}\backslash \left\{ 2 \right\}\).
Ta có \(y = x - 2 + \frac{4}{{x - 2}}\).
Sự biến thiên:
+ Ta có \(y' = \frac{{{x^2} - 4x}}{{{{\left( {x - 2} \right)}^2}}}\), khi đó \(y' = 0 \Leftrightarrow \frac{{{x^2} - 4x}}{{{{\left( {x - 2} \right)}^2}}} = 0 \Leftrightarrow x = 0\) hoặc \(x = 4\).
+ Hàm số đồng biến trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {4; + \infty } \right)\); hàm số nghịch biến trên từng khoảng \(\left( {0;2} \right)\) và \(\left( {2;4} \right)\).
+ Hàm số đạt cực đại tại \(x = 0\) với \({y_{CĐ =- 4}}\); hàm số đạt cực tiểu tại \(x = 4\) với \({y_{CT = 4}}\).
+ Tiệm cận: \(\mathop {\lim }\limits_{x \to {2^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to {2^ - }} y = - \infty \) suy ra tiệm cận đứng là đường thẳng \(x = - 2\).
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {x - 2} \right) - \left( {x - 2 + \frac{4}{{x - 2}}} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 4}}{{x - 2}} = 0\) suy ra đồ thị hàm số có tiệm cận xiên là đường thẳng \(y = x - 2\).
+ Bảng biến thiên:
Đồ thị: Đồ thị của hàm số cắt trục tung tại điểm \(\left( {0; - 4} \right)\), không cắt trục hoành. Đồ thị nhận \(\left( {2;0} \right)\) làm tâm đối xứng. Hai trục đối xứng của hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
b) Tập xác định: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).
Ta có \(y = 2x + 1 - \frac{6}{{x + 1}}\)
Sự biến thiên:
+ Ta có \(y' = \frac{{2{x^2} + 4x + 8}}{{{{\left( {x + 1} \right)}^2}}} > 0\) với mọi \(x \ne - 1\).
+ Hàm số đồng biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).
+ Hàm số không có cực trị.
+ Tiệm cận: \(\mathop {\lim }\limits_{x \to - {1^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to - {1^ - }} y = - \infty \) suy ra tiệm cận đứng là đường thẳng \(x = - 1\).
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {\left( {2x + 1} \right) - \left( {2x + 1 - \frac{6}{{x + 1}}} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{6}{{x + 1}} = 0\) suy ra đồ thị hàm số có tiệm cận xiên là đường thẳng \(y = 2x + 1\).
+ Bảng biến thiên:
Đồ thị: Đồ thị của hàm số cắt trục tung tại điểm \(\left( {0; - 5} \right)\), cắt trục hoành tại các điểm \(\left( {\frac{{ - 5}}{2};0} \right)\)và \(\left( {1;0} \right)\), đồ thị có tâm đối xứng là điểm \(\left( { - 1; - 1} \right)\). Hai trục đối xứng của hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
Bài 1.33 trang 25 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:
Trước khi đi vào giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài tập này sẽ yêu cầu tính đạo hàm của một hàm số hoặc giải một phương trình, bất phương trình liên quan đến đạo hàm.
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng bước. Dưới đây là lời giải mẫu cho bài 1.33 trang 25 Sách bài tập Toán 12 - Kết nối tri thức:
(Nội dung lời giải chi tiết bài 1.33 sẽ được trình bày tại đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh có thể tự học và áp dụng vào các bài tập tương tự.)
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, chúng ta sẽ xem xét một số ví dụ minh họa và bài tập tương tự. Các ví dụ này sẽ giúp các em học sinh hiểu rõ hơn về cách áp dụng các quy tắc và công thức đạo hàm vào các bài toán thực tế.
Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Bài tập tương tự: Tính đạo hàm của các hàm số sau:
Khi giải bài tập về đạo hàm, các em học sinh cần lưu ý một số điểm sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, đặc biệt trong các lĩnh vực khoa học, kỹ thuật, kinh tế. Một số ứng dụng tiêu biểu của đạo hàm bao gồm:
Hy vọng rằng, với lời giải chi tiết và dễ hiểu bài 1.33 trang 25 Sách bài tập Toán 12 - Kết nối tri thức, các em học sinh sẽ nắm vững kiến thức và tự tin làm bài tập. Chúc các em học tập tốt!