Bài 6.22 trang 47 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.22 trang 47 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Có 3 hộp, mỗi hộp chứa ba tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Xét các biến cố sau: A: “Tổng số ghi trên các tấm thẻ là 6”; B: “Ba tấm thẻ có số ghi bằng nhau”. Tính \(P\left( {A|B} \right),P\left( {B|A} \right)\)
Đề bài
Có 3 hộp, mỗi hộp chứa ba tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Xét các biến cố sau:
A: “Tổng số ghi trên các tấm thẻ là 6”;
B: “Ba tấm thẻ có số ghi bằng nhau”.
Tính \(P\left( {A|B} \right),P\left( {B|A} \right)\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính xác suất có điều kiện.
Lời giải chi tiết
Ta có \(\Omega = \left\{ {\left( {a,b,c} \right);1 \le a,b,c \le 3} \right\}\) suy ra \(n\left( \Omega \right) = 27\).
\(A = \left\{ {\left( {1,2,3} \right);\left( {2,1,3} \right);\left( {3,1,2} \right);\left( {1,3,2} \right);\left( {3,2,1} \right);\left( {2,3,1} \right);\left( {2,2,2} \right)} \right\};n\left( A \right) = 7\) suy ra \(P\left( A \right) = \frac{7}{{27}}\).
\(B = \left\{ {\left( {1,1,1} \right);\left( {2,2,2} \right);\left( {3,3,3} \right)} \right\};n\left( B \right) = 3\) suy ra \(P\left( B \right) = \frac{3}{{27}}\).
\(A \cap B = \left\{ {\left( {2.2.2} \right)} \right\}\) suy ra \(P\left( {AB} \right) = \frac{1}{{27}}\)
Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{3}\); \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{1}{7}\)
Bài 6.22 trang 47 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:
Bài 6.22 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x + 1.
Bước 1: Tính đạo hàm f'(x)
Áp dụng quy tắc tính đạo hàm của hàm đa thức, ta có:
f'(x) = 3x2 - 6x + 2
Ngoài bài 6.22, trong sách bài tập Toán 12 - Kết nối tri thức còn rất nhiều bài tập tương tự. Để giải quyết các bài tập này một cách hiệu quả, học sinh cần:
Để học tốt môn Toán 12, các em học sinh nên:
Bài 6.22 trang 47 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải quyết bài tập này và đạt kết quả tốt trong môn Toán 12.
Công thức | Mô tả |
---|---|
f'(x) = limh→0 (f(x+h) - f(x))/h | Định nghĩa đạo hàm |
(u + v)' = u' + v' | Quy tắc đạo hàm của tổng |
(u - v)' = u' - v' | Quy tắc đạo hàm của hiệu |