Logo Header
  1. Môn Toán
  2. Giải bài 5.5 trang 24 sách bài tập toán 12 - Kết nối tri thức

Giải bài 5.5 trang 24 sách bài tập toán 12 - Kết nối tri thức

Giải bài 5.5 trang 24 Sách bài tập Toán 12 - Kết nối tri thức

Bài 5.5 trang 24 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 5.5 trang 24 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Trong không gian Oxyz, cho điểm \(H\left( {3;2;4} \right)\). a) Viết phương trình mặt phẳng \(\left( P \right)\) chứa điểm H và trục Oy. b) Viết phương trình mặt phẳng \(\left( Q \right)\) đi qua điểm H và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C (với A, B, C đều không trùng với gốc tọa độ O) sao cho H là trực tâm tam giác ABC.

Đề bài

Trong không gian Oxyz, cho điểm \(H\left( {3;2;4} \right)\).

a) Viết phương trình mặt phẳng \(\left( P \right)\) chứa điểm H và trục Oy.

b) Viết phương trình mặt phẳng \(\left( Q \right)\) đi qua điểm H và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C (với A, B, C đều không trùng với gốc tọa độ O) sao cho H là trực tâm tam giác ABC.

Phương pháp giải - Xem chi tiếtGiải bài 5.5 trang 24 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Chọn một điểm A bất kì thuộc Oy, khi đó ta có \(\left( P \right)\) đi qua A. Tích có hướng của \(\overrightarrow {AH} \)

và \(\overrightarrow j = \left( {0;1;0} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\).

Ý b: Chứng minh H là hình chiếu của O trên (ABC), mặt phẳng cần tìm đi qua H và có vectơ pháp tuyến là \(\overrightarrow {OH} \).

Lời giải chi tiết

a) Ta lấy \(O\left( {0;0;0} \right) \in Oy\) suy ra \(O \in \left( P \right)\).

Ta có \(\overrightarrow {OH} = \left( {3;2;4} \right)\).

Do \(\left( P \right)\) chứa O, H và Oy suy ra \(\left( P \right)\) nhận \(\left[ {\overrightarrow {OH} ,\overrightarrow j } \right]\) làm vectơ pháp tuyến, vì \(\overrightarrow j = \left( {0;1;0} \right)\) là vectơ chỉ phương của Oy. Ta có \(\left[ {\overrightarrow {OH} ,\overrightarrow j } \right] = \left( { - 4;0;3} \right)\).

Phương trình mặt phẳng của \(\left( P \right)\) là \( - 4\left( {x - 0} \right) + 0\left( {y - 0} \right) + 3\left( {z - 0} \right) = 0 \Leftrightarrow - 4x + 3z = 0\).

b) Giả sử \(D,E\) lần lượt là hình chiếu của \(A,B\) trên cạnh \(BC\) và \(AC\).

Ta có \(\left\{ \begin{array}{l}AD \bot BC\\BE \bot AC\\AD \cap BE = H\end{array} \right.\).

Do \(Ox \bot \left( {yOz} \right)\) nên \(AO \bot \left( {OBC} \right)\). Khi đó có \(OD\) là hình chiếu của \(AD\) trên \(\left( {OBC} \right)\),

mà \(AD \bot BC\) suy ra \(OD \bot BC\)(định lý ba đường vuông góc).

Vì vậy \(BC \bot \left( {OAD} \right)\). Mặt khác \(OH \subset \left( {OAD} \right)\) nên \(BC \bot OH{\rm{ }}\left( 1 \right)\).

Chứng minh tương tự ta có \(OE\) là hình chiếu của \(BE\) trên \(\left( {OAC} \right)\) suy ra \(AC \bot OH{\rm{ }}\left( 2 \right)\).

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(OH \bot \left( {ABC} \right)\) hay H là hình chiếu của O trên (ABC).

\(\left( Q \right)\) có vectơ pháp tuyến là \(\overrightarrow {OH} = \left( {3;2;4} \right)\).

Phương trình mặt phẳng \(\left( Q \right)\) là \(3\left( {x - 3} \right) + 2\left( {y - 2} \right) + 4\left( {z - 4} \right) = 0 \Leftrightarrow 3x - 2y + 4z - 29 = 0\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 5.5 trang 24 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục giải bài tập toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 5.5 trang 24 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 5.5 trang 24 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit)

Dưới đây là đề bài và lời giải chi tiết bài 5.5 trang 24 Sách bài tập Toán 12 - Kết nối tri thức:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm f'(x):
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm f'(x) = 0:
  4. 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Lập bảng xét dấu f'(x):
  6. x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  7. Kết luận:
  8. Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.

    Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý:

  • Để tìm các điểm cực trị của hàm số, ta cần tìm các điểm làm đạo hàm bậc nhất bằng 0 và xét dấu đạo hàm bậc nhất để xác định tính đơn điệu của hàm số tại các điểm đó.
  • Nếu đạo hàm bậc nhất đổi dấu từ dương sang âm tại một điểm, thì điểm đó là điểm cực đại của hàm số.
  • Nếu đạo hàm bậc nhất đổi dấu từ âm sang dương tại một điểm, thì điểm đó là điểm cực tiểu của hàm số.

Các bài tập tương tự

Để củng cố kiến thức về đạo hàm và các ứng dụng của đạo hàm, các em có thể tham khảo thêm các bài tập tương tự sau:

  • Bài 5.6 trang 24 Sách bài tập Toán 12 - Kết nối tri thức
  • Bài 5.7 trang 25 Sách bài tập Toán 12 - Kết nối tri thức
  • Các bài tập về đạo hàm trong các đề thi thử THPT Quốc gia

Giaitoan.edu.vn hy vọng rằng lời giải chi tiết bài 5.5 trang 24 Sách bài tập Toán 12 - Kết nối tri thức sẽ giúp các em học sinh hiểu rõ hơn về kiến thức đạo hàm và tự tin làm bài tập. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 12