Logo Header
  1. Môn Toán
  2. Giải bài 18 trang 51 sách bài tập toán 12 - Kết nối tri thức

Giải bài 18 trang 51 sách bài tập toán 12 - Kết nối tri thức

Giải bài 18 trang 51 Sách bài tập Toán 12 - Kết nối tri thức

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 18 trang 51 Sách bài tập Toán 12 - Kết nối tri thức. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất cho học sinh, sinh viên. Hãy cùng theo dõi bài viết này để hiểu rõ hơn về cách giải bài tập và áp dụng vào các bài tập tương tự nhé!

Bảng tần số ghép nhóm sau cho biết thành tích luyện tập của một vận động viên nghiệp dư chạy maraton 42 km. Khoảng tứ phân vị của mẫu số liệu ghép nhóm là A. 0,5. B. 0,75. C. 6,75. D. 7,5.

Đề bài

Bảng tần số ghép nhóm sau cho biết thành tích luyện tập của một vận động viên nghiệp dư chạy maraton 42 km.

Giải bài 18 trang 51 sách bài tập toán 12 - Kết nối tri thức 1

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

A. 0,5.

B. 0,75.

C. 6,75.

D. 7,5.

Phương pháp giải - Xem chi tiếtGiải bài 18 trang 51 sách bài tập toán 12 - Kết nối tri thức 2

Xác định vị trí của tứ phân vị thứ nhất và thứ ba, nằm trong nhóm nào. Từ đó dùng công thức để tính \({Q_1}\) và \({Q_3}\). Từ đó tính \({\Delta _Q}\).

Lời giải chi tiết

Cỡ mẫu là \(n = 2 + 6 + 7 + 4 + 1 = 20\).

Vị trí của \({Q_1}\) là \(\frac{n}{4} = 5\) suy ra nhóm chứa tứ phân vị thứ nhất là \(\left[ {6,5;7} \right)\).

Ta có \({Q_1} = 6,5 + \frac{{\frac{{1 \cdot 20}}{4} - 2}}{6} \cdot 0,5 = 6,75\). Tương tự có vị trí của \({Q_3}\) là \(\frac{{3n}}{4} = 15\) suy ra nhóm chứa tứ phân vị thứ ba là \(\left[ {7;7,5} \right)\). Do đó \({Q_3} = 7 + \frac{{\frac{{3 \cdot 20}}{4} - 8}}{7} \cdot 0,5 = 7,5\).

Suy ra khoảng tứ phân vị là \({\Delta _Q} = {Q_3} - {Q_1} = 7,5 - 6,75 = 0,75\).

Đáp án B.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 18 trang 51 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 18 trang 51 Sách bài tập Toán 12 - Kết nối tri thức: Tổng quan

Bài 18 trang 51 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán cụ thể.

Nội dung bài tập

Bài 18 trang 51 thường bao gồm các dạng bài tập sau:

  • Bài tập về hàm số: Xác định tập xác định, tập giá trị, tính đơn điệu, cực trị của hàm số.
  • Bài tập về đạo hàm: Tính đạo hàm của hàm số, ứng dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu.
  • Bài tập về tích phân: Tính tích phân xác định, ứng dụng tích phân để tính diện tích hình phẳng.
  • Bài tập về số phức: Thực hiện các phép toán trên số phức, giải phương trình bậc hai với hệ số phức.
  • Bài tập về hình học không gian: Tính khoảng cách giữa hai điểm, giữa điểm và mặt phẳng, góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng.

Phương pháp giải bài tập

Để giải bài tập hiệu quả, bạn cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ các định nghĩa, định lý, công thức và các quy tắc liên quan đến chủ đề bài tập.
  2. Phân tích đề bài: Đọc kỹ đề bài, xác định rõ yêu cầu của bài toán, các dữ kiện đã cho và các đại lượng cần tìm.
  3. Lựa chọn phương pháp giải phù hợp: Dựa vào đặc điểm của bài toán, lựa chọn phương pháp giải phù hợp nhất.
  4. Thực hiện các bước giải: Thực hiện các bước giải một cách chính xác, rõ ràng, có hệ thống.
  5. Kiểm tra lại kết quả: Sau khi giải xong, kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Bài tập: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại và cực tiểu của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Xác định loại cực trị:
    • Với x < 0, y' > 0, hàm số đồng biến.
    • Với 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Với x > 2, y' > 0, hàm số đồng biến.
    Vậy hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2 và đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu ý khi giải bài tập

Khi giải bài tập, bạn cần lưu ý:

  • Đọc kỹ đề bài và hiểu rõ yêu cầu.
  • Sử dụng đúng công thức và định lý.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nâng cao kỹ năng giải toán.

Tài liệu tham khảo

Để học tập và ôn luyện hiệu quả, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Kết nối tri thức
  • Sách bài tập Toán 12 - Kết nối tri thức
  • Các trang web học toán online uy tín
  • Các video bài giảng Toán 12 trên YouTube

Kết luận

Bài 18 trang 51 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12