Logo Header
  1. Môn Toán
  2. Giải bài 2.1 trang 43 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.1 trang 43 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.1 trang 43 Sách bài tập Toán 12 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 2.1 trang 43 sách bài tập Toán 12 - Kết nối tri thức. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài tập 2.1 trang 43 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho hình chóp tứ giác S.ABCD. Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập \(\left\{ S,A,B,C,D \right\}\): a) Các vectơ nào có điểm đầu là S? b) Những vectơ nào có giá nằm trong mặt phẳng (SAB)? c) Vectơ nào là vectơ đối của vectơ \(\overrightarrow {BC} \)?

Đề bài

Cho hình chóp tứ giác S.ABCD. Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập \(\left\{ S,A,B,C,D \right\}\):

a) Các vectơ nào có điểm đầu là S?

b) Những vectơ nào có giá nằm trong mặt phẳng (SAB)?

c) Vectơ nào là vectơ đối của vectơ \(\overrightarrow {BC} \)?

Phương pháp giải - Xem chi tiếtGiải bài 2.1 trang 43 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Trong các điểm đã cho, liệt kê các vectơ được tạo thành từ điểm S và một điểm trong các điểm còn lại.

Ý b: Tương tự như ý a, liệt kê các vectơ được tạo thành từ hai trong ba điểm \(\left\{ {S,A,B} \right\}\).

Ý c: Hiểu khái niệm vectơ đối.

Lời giải chi tiết

a) Các vectơ có điểm đầu là S là \(\overrightarrow {SA} ,{\rm{ }}\overrightarrow {SB} ,{\rm{ }}\overrightarrow {SC} ,{\rm{ }}\overrightarrow {SD} \).

b) Những vectơ có giá nằm trong mặt phẳng (SAB) là \(\overrightarrow {SA} ,{\rm{ }}\overrightarrow {SB} ,{\rm{ }}\overrightarrow {AB} ,{\rm{ }}\overrightarrow {AS} ,{\rm{ }}\overrightarrow {BS} ,{\rm{ }}\overrightarrow {BA} \).

c) Vectơ đối của vectơ \(\overrightarrow {BC} \) là \(\overrightarrow {CB} \).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2.1 trang 43 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2.1 trang 43 Sách bài tập Toán 12 - Kết nối tri thức: Phân tích chi tiết và hướng dẫn giải

Bài 2.1 trang 43 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm và các ứng dụng của đạo hàm.

Nội dung bài tập 2.1 trang 43

Bài tập 2.1 trang 43 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, cực trị của hàm số.

Hướng dẫn giải bài 2.1 trang 43

Để giải bài tập 2.1 trang 43, bạn có thể thực hiện theo các bước sau:

  1. Đọc kỹ đề bài và xác định yêu cầu của bài toán.
  2. Xác định hàm số cần tính đạo hàm.
  3. Áp dụng các quy tắc tính đạo hàm phù hợp để tìm đạo hàm của hàm số.
  4. Thay các giá trị cụ thể vào đạo hàm để tính kết quả.
  5. Kiểm tra lại kết quả và đảm bảo tính chính xác.

Ví dụ minh họa giải bài 2.1 trang 43

Ví dụ: Tính đạo hàm của hàm số f(x) = x2 + 2x - 1 tại x = 1.

Giải:

f'(x) = 2x + 2

f'(1) = 2(1) + 2 = 4

Vậy, đạo hàm của hàm số f(x) tại x = 1 là 4.

Các lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để kiểm tra kết quả.
  • Tham khảo các tài liệu học tập và lời giải trên mạng để hiểu rõ hơn về bài toán.

Mở rộng kiến thức về đạo hàm

Đạo hàm là một khái niệm quan trọng trong toán học, có nhiều ứng dụng trong các lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật. Việc hiểu rõ về đạo hàm sẽ giúp bạn giải quyết các bài toán phức tạp và ứng dụng kiến thức vào thực tế.

Bảng tổng hợp các công thức đạo hàm thường gặp

Hàm sốĐạo hàm
f(x) = c (hằng số)f'(x) = 0
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)

Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn khi giải bài tập 2.1 trang 43 sách bài tập Toán 12 - Kết nối tri thức. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12