Bài 1.54 trang 34 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.54 trang 34 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hàm số (y = fleft( x right)) có đạo hàm (f'left( x right) = x{left( {x - 1} right)^2}{left( {x + 2} right)^4}) với mọi (x in mathbb{R}). Số điểm cực trị của hàm số đã cho là A. (0). B. (1). C. (2). D. (3).
Đề bài
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}{\left( {x + 2} \right)^4}\) với mọi \(x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là
A. \(0\)
B. \(1\)
C. \(2\)
D. \(3\)
Phương pháp giải - Xem chi tiết
+ Giải phương trình \(f'\left( x \right) = 0\) sau đó xét dấu đạo hàm.
+ Số điểm cực trị bằng số lần đổi dấu của đạo hàm.
Lời giải chi tiết
Đáp án: B.
Ta có \(f'\left( x \right) = 0 \Leftrightarrow x{\left( {x - 1} \right)^2}{\left( {x + 2} \right)^4} = 0 \Leftrightarrow x = - 2\) hoặc \(x = 0\) hoặc \(x = 1\).
Đạo hàm chỉ đổi dấu khi đi qua \(x = 0\) nên hàm số chỉ có một điểm cực trị.
Vậy chọn đáp án B.
Bài 1.54 trang 34 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Nội dung bài toán: (Giả sử nội dung bài toán là: Cho hàm số y = f(x) có đạo hàm f'(x) = 3x2 - 6x + 1. Tìm các điểm cực trị của hàm số.)
Khi giải các bài toán về đạo hàm, học sinh cần chú ý:
Để củng cố kiến thức về đạo hàm, học sinh có thể làm thêm các bài tập tương tự trong sách bài tập Toán 12 - Kết nối tri thức. Một số bài tập gợi ý:
Bài 1.54 trang 34 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!