Bài 1.64 trang 36 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.64 trang 36, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hàm số (y = {x^3} - 3{x^2} + 2) có đồ thị (C). a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. b) Viết phương trình tiếp tuyến (Delta ) của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng (Delta ) là tiếp tuyến có hệ số góc nhỏ nhất của (C). c) Tìm các giá trị của tham số (m) để phương trình ({x^3} - 3{x^2} - m = 0) có ba nghiệm phân biệt.
Đề bài
Cho hàm số \(y = {x^3} - 3{x^2} + 2\) có đồ thị (C).
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến \(\Delta \) của đồ thị (C) tại tâm đối xứng của nó. Chứng minh rằng \(\Delta \) là tiếp tuyến có hệ số góc nhỏ nhất của (C).
c) Tìm các giá trị của tham số \(m\) để phương trình \({x^3} - 3{x^2} - m = 0\) có ba nghiệm phân biệt.
Phương pháp giải - Xem chi tiết
Ý a: Khảo sát và vẽ đồ thị (C).
Ý b: Hoành độ tâm đối xứng là nghiệm của đạo hàm cấp 2. Tiếp tuyến tại điểm có hệ số góc là đạo hàm cấp 1 tại hoành độ điểm đó, từ đây ta viết được phương trình tiếp tuyến cần tìm cũng như tìm được giá trị nhỏ nhất của hệ số góc tiếp tuyến một cách tổng quát.
Ý c: Sử dụng sử dụng sự tương giao giữa hai đồ thị, số nghiệm phương trình là số giao điểm của hai đồ thị, kết hợp với đồ thị đã vẽ để giải quyết bài toán.
Lời giải chi tiết
a) Xét hàm số \(y = {x^3} - 3{x^2} + 2\).
Tập xác định: \(\mathbb{R}\).
+ Sự biến thiên:
Ta có \(y' = 3{x^2} - 6x\) suy ra \(y' = 0 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow x = 0\) hoặc \(x = 2\).
Hàm số đồng biến trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\), nghịch biến trên \(\left( {0;2} \right)\).
Hàm số đạt cực đại tại \(x = 0\) và \({y_{CĐ}} = 2\).
Hàm số đạt cực tiểu tại \(x = 2\) và \({y_{CT}} = - 2\).
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to \pm \infty } y = \pm \infty \).
Lập bảng biến thiên:
+ Đồ thị: Đồ thị nhận \(I\left( {1;0} \right)\) làm tâm đối xứng.
b) Ta có \(\Delta \) là tiếp tuyến của (C) tại \(I\left( {1;0} \right)\) suy ra \(\Delta \) là đường thẳng có hệ số góc là \(y'\left( 1 \right)\).
Phương trình đường thẳng \(\Delta \): \(y = y'\left( 1 \right)\left( {x - 1} \right) + y\left( 1 \right) \Leftrightarrow y = - 3\left( {x - 1} \right) + 0 \Leftrightarrow y = - 3x + 3\).
Các tiếp tuyến của (C) có hệ số góc tổng quát là \(y' = 3{x^2} - 6x = 3\left( {{x^2} - 2x + 1} \right) - 3 = 3{\left( {x - 1} \right)^2} - 3 \ge 3\forall x\)
Suy ra hệ số góc có giá trị nhỏ nhất là -3.
Vậy \(\Delta \) là tiếp tuyến có hệ số góc nhỏ nhất của (C).
c) Xét phương trình \({x^3} - 3{x^2} - m = 0 \Leftrightarrow {x^3} - 3{x^2} + 2 = m + 2{\rm{ }}\left( 1 \right)\).
Số nghiệm của phương trình trên là số giao điểm của đồ thị (C) với đường thẳng \(y = m + 2\).
Từ đồ thị (C) ta thấy, đồ thị (C) cắt đường thẳng \(y = m + 2\) tại 3 điểm phân biệt khi và chỉ khi
\( - 2 < m + 2 < 2 \Leftrightarrow - 4 < m < 0\).
Vậy \( - 4 < m < 0\) thỏa mãn yêu cầu bài toán.
Bài 1.64 trang 36 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là đề bài và lời giải chi tiết bài 1.64 trang 36 sách bài tập Toán 12 Kết nối tri thức:
Đề bài: (Nội dung đề bài sẽ được điền vào đây - ví dụ: Cho hàm số y = f(x) có đạo hàm f'(x) = 3x2 - 6x + 1. Tìm các điểm cực trị của hàm số.)
Lời giải:
Lưu ý:
Để củng cố kiến thức về đạo hàm, các em có thể tham khảo thêm các bài tập tương tự sau:
Các em có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 12:
Hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 1.64 trang 36 sách bài tập Toán 12 Kết nối tri thức và tự tin hơn trong quá trình học tập.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán!