Logo Header
  1. Môn Toán
  2. Giải bài 2.5 trang 44 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.5 trang 44 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.5 trang 44 Sách bài tập Toán 12 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 2.5 trang 44 sách bài tập Toán 12 chương trình Kết nối tri thức. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 2.5 trang 44 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho tứ diện ABCD. Gọi E, F là các điểm thuộc các cạnh AB, CD sao cho (AE = frac{1}{3}AB) và (CF = frac{1}{3}CD). Chứng minh rằng: a) (overrightarrow {EF} = overrightarrow {AD} - frac{1}{3}overrightarrow {AB} - frac{2}{3}overrightarrow {CD} ); b) (overrightarrow {EF} = overrightarrow {BC} + frac{2}{3}overrightarrow {AB} + frac{1}{3}overrightarrow {CD} ); c) (overrightarrow {EF} = frac{1}{3}overrightarrow {AD} + frac{2}{3}overrightarrow {BC} + frac{1}{3}ov

Đề bài

Cho tứ diện ABCD. Gọi E, F là các điểm thuộc các cạnh AB, CD sao cho \(AE = \frac{1}{3}AB\) và \(CF = \frac{1}{3}CD\). Chứng minh rằng:

a) \(\overrightarrow {EF} = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} \);

b) \(\overrightarrow {EF} = \overrightarrow {BC} + \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {CD} \);

c) \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AB} \).

Phương pháp giải - Xem chi tiếtGiải bài 2.5 trang 44 sách bài tập toán 12 - Kết nối tri thức 1

Ý a và ý b: Sử dụng phép cộng, trừ vectơ, tính chất của phép cộng, phép trừ đó (giao hoán, kết hợp), cộng hai vectơ đối với nhau. Ngoài ra còn cần lựa chọn điểm trung gian trong các điểm đã cho sẵn một cách phù hợp để xuất hiện các vectơ mình muốn, các vectơ đối cũng như xuất hiện công thức trong đề. Cụ thể ta sẽ biến đổi một vế để đưa về vế còn lại, từ đó suy ra điều phải chứng minh.

Ý c: kết hợp ý a và ý b để chứng minh ý c, có thể nhân thêm rồi cộng hai vế với nhau để chứng minh.

Lời giải chi tiết

a) Ta có

\(\begin{array}{l}\overrightarrow {EF} = \overrightarrow {EA} + \overrightarrow {AF} = - \overrightarrow {AE} + \left( {\overrightarrow {AD} + \overrightarrow {DF} } \right) = - \overrightarrow {AE} + \overrightarrow {AD} + \left( {\overrightarrow {DC} + \overrightarrow {CF} } \right)\\ = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \overrightarrow {CD} + \overrightarrow {CF} = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \overrightarrow {CD} + \frac{1}{3}\overrightarrow {CD} = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} .\end{array}\)

b) Ta có

\(\begin{array}{l}\overrightarrow {EF} = \overrightarrow {EA} + \overrightarrow {AF} = \frac{{ - 1}}{3}\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {CF} = \frac{{ - 1}}{3}\overrightarrow {AB} + \overrightarrow {AC} + \frac{1}{3}\overrightarrow {CD} \\ = \frac{{ - 1}}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {CD} + \overrightarrow {AB} + \overrightarrow {BC} = \frac{2}{3}\overrightarrow {AB} + \overrightarrow {BC} + \frac{1}{3}\overrightarrow {CD} \\ = \overrightarrow {BC} + \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {CD} .\end{array}\)

c) Từ ý a và ý b suy ra

\(\begin{array}{l}3\overrightarrow {EF} = \left( {\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} } \right) + 2\left( {\overrightarrow {BC} + \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {CD} } \right)\\ = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} + 2\overrightarrow {BC} + \frac{4}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {CD} \\ = \overrightarrow {AD} + \overrightarrow {AB} + 2\overrightarrow {BC} \end{array}\)

Do đó \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {BC} \) (đ.p.c.m).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2.5 trang 44 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2.5 trang 44 Sách bài tập Toán 12 - Kết nối tri thức: Phương pháp tiếp cận chi tiết

Bài 2.5 trang 44 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp bạn lựa chọn phương pháp giải phù hợp và tránh sai sót không đáng có.

Kiến thức cần nắm vững

  • Đạo hàm của hàm số: Hiểu rõ định nghĩa đạo hàm, ý nghĩa hình học và vật lý của đạo hàm.
  • Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp, và các hàm số cơ bản như hàm số mũ, hàm số logarit, hàm số lượng giác.
  • Ứng dụng của đạo hàm: Biết cách sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số, và giải các bài toán liên quan đến tối ưu hóa.

Lời giải chi tiết bài 2.5 trang 44

Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài 2.5 trang 44. Giả sử bài toán yêu cầu tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1.

Bước 1: Áp dụng quy tắc tính đạo hàm của tổng và hiệu.

f'(x) = (x3)' - (2x2)' + (5x)' - (1)'

Bước 2: Áp dụng quy tắc tính đạo hàm của lũy thừa.

f'(x) = 3x2 - 4x + 5 - 0

Bước 3: Rút gọn biểu thức.

f'(x) = 3x2 - 4x + 5

Vậy, đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1 là f'(x) = 3x2 - 4x + 5.

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 2.5, sách bài tập Toán 12 Kết nối tri thức còn rất nhiều bài tập tương tự về đạo hàm. Để giải quyết các bài tập này, bạn có thể áp dụng các phương pháp sau:

  • Phân tích hàm số: Xác định loại hàm số, các thành phần của hàm số, và các tính chất của hàm số.
  • Chọn quy tắc tính đạo hàm phù hợp: Dựa vào cấu trúc của hàm số để lựa chọn quy tắc tính đạo hàm phù hợp.
  • Thực hiện các phép biến đổi đại số: Rút gọn biểu thức đạo hàm để có kết quả cuối cùng.
  • Kiểm tra lại kết quả: Đảm bảo rằng kết quả đạo hàm là chính xác và phù hợp với yêu cầu của bài toán.

Ví dụ minh họa thêm

Bài tập: Tính đạo hàm của hàm số g(x) = sin(2x) + cos(x).

Lời giải:

g'(x) = (sin(2x))' + (cos(x))'

g'(x) = cos(2x) * 2 - sin(x)

g'(x) = 2cos(2x) - sin(x)

Lưu ý quan trọng

Khi giải các bài tập về đạo hàm, bạn cần chú ý các điểm sau:

  • Đơn vị đo: Đảm bảo rằng các đơn vị đo trong bài toán là nhất quán.
  • Điều kiện xác định: Xác định điều kiện xác định của hàm số để đảm bảo rằng đạo hàm có nghĩa.
  • Kiểm tra kết quả: Luôn kiểm tra lại kết quả đạo hàm để đảm bảo tính chính xác.

Tổng kết

Bài 2.5 trang 44 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và vận dụng các kiến thức về đạo hàm vào giải quyết các bài toán thực tế. Hy vọng rằng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn trong việc học tập và làm bài tập Toán 12.

Tài liệu, đề thi và đáp án Toán 12