Logo Header
  1. Môn Toán
  2. Giải bài 2.9 trang 45 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.9 trang 45 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.9 trang 45 Sách bài tập Toán 12 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài 2.9 trang 45 sách bài tập Toán 12 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.

Cho hình hộp \(ABCD.A'B'C'D'\). Đặt \(\overrightarrow {AA'} = \overrightarrow x \), \(\overrightarrow {AB} = \overrightarrow y \), \(\overrightarrow {AC} = \overrightarrow z \). Hãy biểu diễn các vectơ sau qua ba vectơ \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \): a) \(\overrightarrow {AD} \); b) \(\overrightarrow {AC'} \); c) \(\overrightarrow {BD'} \).

Đề bài

Cho hình hộp \(ABCD.A'B'C'D'\). Đặt \(\overrightarrow {AA'} = \overrightarrow x \), \(\overrightarrow {AB} = \overrightarrow y \), \(\overrightarrow {AC} = \overrightarrow z \). Hãy biểu diễn các vectơ sau qua ba vectơ \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \):

a) \(\overrightarrow {AD} \);

b) \(\overrightarrow {AC'} \);

c) \(\overrightarrow {BD'} \).

Phương pháp giải - Xem chi tiếtGiải bài 2.9 trang 45 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Sử dụng tích chất của hình bình hành để biểu diễn \(\overrightarrow {AD} \) theo một vectơ khác phù hợp, tách, biến đổi để xuất hiện các vectơ \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \).

Ý b: Tương tự ý a, sử dụng tích chất của hình bình hành để biểu diễn \(\overrightarrow {AC'} \) theo một vectơ khác phù hợp, tách, biến đổi để xuất hiện các vectơ \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \).

Ý c: Tương tự hai ý trên, ngoài mục đích tách để xuất hiện \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \) còn có thể tách để xuất hiện các vectơ đã tìm ở ý a và b như \(\overrightarrow {AD} \) và \(\overrightarrow {AC'} \).

Lời giải chi tiết

a) Ta có đáy \(ABCD\) là hình bình hành do đó \(\overrightarrow {AD} = \overrightarrow {BC} \).

Mặt khác \(\overrightarrow {BC} = \overrightarrow {BA} + \overrightarrow {AC} = - \overrightarrow {AB} + \overrightarrow {AC} = - \overrightarrow y + \overrightarrow z \). Vậy \(\overrightarrow {AD} = - \overrightarrow y + \overrightarrow z \).

b) Ta có \(ACC'A'\) là hình bình hành suy ra \(\overrightarrow {CC'} = \overrightarrow {AA'} \).

Do đó \(\overrightarrow {AC'} = \overrightarrow {AC} + \overrightarrow {CC'} = \overrightarrow {AC} + \overrightarrow {AA'} = \overrightarrow z + \overrightarrow x \).

c) Ta có \(\overrightarrow {DD'} = \overrightarrow {AA'} \). Khi đó

\(\overrightarrow {BD'} = \overrightarrow {BA} + \overrightarrow {AD} + \overrightarrow {DD'} = - \overrightarrow {AB} - \overrightarrow y + \overrightarrow z + \overrightarrow {AA'} = - \overrightarrow y - \overrightarrow y + \overrightarrow z + \overrightarrow x = \overrightarrow x - 2\overrightarrow y + \overrightarrow z \).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 2.9 trang 45 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 2.9 trang 45 Sách bài tập Toán 12 - Kết nối tri thức: Tổng quan

Bài 2.9 trang 45 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài toán này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để giải quyết bài toán này một cách hiệu quả.

Nội dung bài toán

Bài 2.9 thường xoay quanh việc tính đạo hàm của một hàm số cụ thể, hoặc tìm điều kiện để hàm số có đạo hàm. Đôi khi, bài toán còn yêu cầu học sinh sử dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.

Lời giải chi tiết bài 2.9 trang 45

Để giải bài 2.9 trang 45, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần tính đạo hàm.
  2. Chọn công thức đạo hàm phù hợp: Dựa vào dạng của hàm số, chọn công thức đạo hàm tương ứng. Ví dụ, nếu hàm số là đa thức, ta sử dụng công thức đạo hàm của đa thức. Nếu hàm số là hàm lượng giác, ta sử dụng công thức đạo hàm của hàm lượng giác.
  3. Tính đạo hàm: Áp dụng công thức đạo hàm đã chọn để tính đạo hàm của hàm số.
  4. Kiểm tra kết quả: Kiểm tra lại kết quả tính đạo hàm để đảm bảo tính chính xác.

Ví dụ minh họa:

Giả sử bài toán yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x + 1. Ta thực hiện như sau:

  • Bước 1: Hàm số f(x) = x2 + 2x + 1 là một đa thức.
  • Bước 2: Công thức đạo hàm của đa thức: (xn)' = nxn-1
  • Bước 3: f'(x) = 2x + 2
  • Bước 4: Kiểm tra lại kết quả.

Các dạng bài tập tương tự

Ngoài bài 2.9, còn rất nhiều bài tập tương tự trong sách bài tập Toán 12 - Kết nối tri thức. Các bài tập này thường yêu cầu học sinh:

  • Tính đạo hàm của các hàm số phức tạp hơn.
  • Tìm điều kiện để hàm số có đạo hàm.
  • Sử dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
  • Ứng dụng đạo hàm vào các bài toán thực tế.

Mẹo giải bài tập đạo hàm

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ tính đạo hàm online.
  • Tham khảo lời giải chi tiết của các bài tập tương tự.

Tài liệu tham khảo

Để học tốt môn Toán 12, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Kết nối tri thức.
  • Sách bài tập Toán 12 - Kết nối tri thức.
  • Các trang web học Toán online uy tín.
  • Các video bài giảng Toán 12 trên YouTube.

Kết luận

Bài 2.9 trang 45 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập được trình bày trong bài viết này, bạn sẽ tự tin chinh phục bài toán này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12