Logo Header
  1. Môn Toán
  2. Giải bài 4.16 trang 13 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.16 trang 13 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.16 trang 13 Sách bài tập Toán 12 - Kết nối tri thức

Bài 4.16 trang 13 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.16 trang 13 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Tính các tích phân sau: a) (intlimits_0^1 {left( {{3^x} - 2{e^x}} right)dx} ); b) (intlimits_0^1 {frac{{{{left( {{e^x} - 1} right)}^2}}}{{2{e^x}}}dx} ).

Đề bài

Tính các tích phân sau:

a) \(\int\limits_0^1 {\left( {{3^x} - 2{e^x}} \right)dx} \);

b) \(\int\limits_0^1 {\frac{{{{\left( {{e^x} - 1} \right)}^2}}}{{2{e^x}}}dx} \).

Phương pháp giải - Xem chi tiếtGiải bài 4.16 trang 13 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Sử dụng công thức nguyên hàm của hàm số mũ.

Ý b: Sử dụng công thức nguyên hàm của hàm số mũ.

Lời giải chi tiết

a) Ta có \(\int\limits_0^1 {\left( {{3^x} - 2{e^x}} \right)dx} = \left. {\left( {\frac{{{3^x}}}{{\ln 3}} - 2{e^x}} \right)} \right|_0^1 = \frac{3}{{\ln 3}} - 2e - \frac{1}{{\ln 3}} + 2 = 2 - 2e + \frac{2}{{\ln 3}}\).

b) Ta có

\(\int\limits_0^1 {\frac{{{{\left( {{e^x} - 1} \right)}^2}}}{{2{e^x}}}dx} = \int\limits_0^1 {\frac{{{e^{2x}} - 2{e^x} + 1}}{{2{e^x}}}dx} = \int\limits_0^1 {\frac{{{e^{2x}} - 2{e^x} + 1}}{{2{e^x}}}dx} = \int\limits_0^1 {\left( {\frac{{{e^x}}}{2} - 1 + \frac{1}{{2{e^x}}}} \right)dx} = \frac{1}{2}\int\limits_0^1 {{e^x}dx - \int\limits_0^1 {dx - \frac{1}{2}} } \int\limits_0^1 {{{\left( {{e^{ - x}}} \right)}^\prime }dx} \)\( = \left. {\frac{1}{2}{e^x}} \right|_0^1 - \left. x \right|_0^1 - \frac{1}{2}\left. {{e^{ - x}}} \right|_0^1 = \frac{{e - 1}}{2} - 1 - \frac{{{e^{ - 1}}}}{2} + \frac{1}{2} = \frac{{e - {e^{ - 1}} - 2}}{2}\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 4.16 trang 13 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 4.16 trang 13 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.16 trang 13 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc cộng, trừ, nhân, chia, đạo hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit)

Dưới đây là đề bài và lời giải chi tiết bài 4.16 trang 13 Sách bài tập Toán 12 - Kết nối tri thức:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm f'(x):
  2. f'(x) = 3x2 - 6x

  3. Tìm các điểm làm f'(x) = 0:
  4. 3x2 - 6x = 0

    3x(x - 2) = 0

    Suy ra x = 0 hoặc x = 2

  5. Lập bảng xét dấu f'(x):
  6. x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  7. Kết luận:
  8. Hàm số f(x) đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.

    Hàm số f(x) đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Lưu ý:

  • Để tìm các điểm cực trị của hàm số, ta cần tìm các điểm làm đạo hàm bậc nhất bằng 0 và xét dấu đạo hàm bậc nhất để xác định tính đơn điệu của hàm số tại các điểm đó.
  • Nếu đạo hàm bậc nhất đổi dấu từ dương sang âm tại một điểm, thì điểm đó là điểm cực đại của hàm số.
  • Nếu đạo hàm bậc nhất đổi dấu từ âm sang dương tại một điểm, thì điểm đó là điểm cực tiểu của hàm số.

Bài tập 4.16 trang 13 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập điển hình để rèn luyện kỹ năng tìm cực trị của hàm số. Hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài tập này và tự tin hơn trong quá trình học tập.

Ngoài ra, các em có thể tham khảo thêm các bài giải khác trên Giaitoan.edu.vn để nắm vững kiến thức và kỹ năng giải toán 12.

Các bài tập tương tự:

  • Giải bài 4.17 trang 13 Sách bài tập Toán 12 - Kết nối tri thức
  • Giải bài 4.18 trang 13 Sách bài tập Toán 12 - Kết nối tri thức

Tài liệu, đề thi và đáp án Toán 12