Bài 1.8 trang 9 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.8 trang 9 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Hàm chi phí và hàm doanh thu (đều tính bằng triệu đồng) của một loại sản phẩm lần lượt là (Cleft( x right) = 25,5x + 1000) và (Rleft( x right) = 75,5x), trong đó (x)là số đơn vị sản phẩm đó được sản xuất và bán ra. a) Tìm hàm lợi nhuận trung bình (bar Pleft( x right) = frac{{Rleft( x right) - Cleft( x right)}}{x}). b) Tìm lợi nhuận trung bình khi mức sản xuất (x) lần lượt là (100,{rm{ }}500) và (1{rm{ }}000) đơn vị sản phẩm. c) Xét tính đơn điệu của hàm lợi nhuận
Đề bài
Hàm chi phí và hàm doanh thu (đều tính bằng triệu đồng) của một loại sản phẩm lần lượt là \(C\left( x \right) = 25,5x + 1000\) và \(R\left( x \right) = 75,5x\), trong đó \(x\)là số đơn vị sản phẩm đó được sản xuất và bán ra.
a) Tìm hàm lợi nhuận trung bình \(\bar P\left( x \right) = \frac{{R\left( x \right) - C\left( x \right)}}{x}\).
b) Tìm lợi nhuận trung bình khi mức sản xuất \(x\) lần lượt là \(100,{\rm{ }}500\) và \(1{\rm{ }}000\) đơn vị sản phẩm.
c) Xét tính đơn điệu của hàm lợi nhuận trung bình \(\bar P\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) và tính giới hạn của hàm số này khi \(x \to + \infty \). Giải thích ý nghĩa thực tiễn của kết quả nhận được.
Phương pháp giải - Xem chi tiết
Ý a: Tìm tập xác định cho hàm số và tìm công thức hàm số theo đề bài.
Ý b: Tính giá trị của hàm số với các giá trị biến khác nhau.
Ý c: Xét tính đơn điệu của hàm số trên khoảng bằng cách tính đạo hàm của hàm số đó và nhận xét dấu của đạo hàm trên khoảng.
Lời giải chi tiết
a) Tập xác định của hàm số \(\bar P\left( x \right)\) là \(\left( {0; + \infty } \right)\).
Ta có hàm lợi nhuận trung bình là \(\bar P\left( x \right) = \frac{{R\left( x \right) - C\left( x \right)}}{x} = \frac{{75,5x - \left( {25,5x + 1000} \right)}}{x} = \frac{{50x - 1000}}{x} = 50 - \frac{{1000}}{x}\)
b) Để tìm lợi nhuận trung bình khi mức sản xuất \(x\) lần lượt là \(100,{\rm{ }}500\) và \(1{\rm{ }}000\) đơn vị sản phẩm, thay \(x\) vào hàm \(\bar P\left( x \right)\) ta được \(\bar P\left( {100} \right) = 50 - \frac{{1000}}{{100}} = 50 - 10 = 40\); \(\bar P\left( {500} \right) = 50 - \frac{{1000}}{{500}} = 50 - 2 = 48\); \(\bar P\left( {1000} \right) = 50 - \frac{{1000}}{{1000}} = 50 - 1 = 49\).
c) Ta có: \(\bar P'\left( x \right) = {\left( {50 - \frac{{1000}}{x}} \right)^\prime } = \frac{{100}}{{{x^2}}}\). Ta thấy \(\bar P'\left( x \right) > 0,\forall x \in \left( {0; + \infty } \right)\). Do đó \(\bar P\left( x \right)\) là hàm số đồng biến trên \(\left( {0; + \infty } \right)\).
Mặt khác \(\mathop {\lim }\limits_{x \to + \infty } \bar P\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } 50 - \frac{{1000}}{x} = 50 - 1000\mathop {\lim }\limits_{x \to + \infty } \frac{1}{x} = 50 - 1000 \cdot 0 = 50.\)
Tức là lợi nhuận trung bình của loại sản phẩm đã cho sẽ luôn tăng theo số sản phẩm được sản xuất, bán ra và lợi nhuận trung bình đó càng tiến đến \(50\) triệu đồng khi số lượng sản phẩm càng nhiều.
Bài 1.8 trang 9 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về giới hạn của hàm số. Để giải bài tập này, học sinh cần nắm vững các khái niệm cơ bản về giới hạn, các tính chất của giới hạn và các phương pháp tính giới hạn.
Bài tập 1.8 yêu cầu tính các giới hạn sau:
1. Giải lim (x→2) (x^2 - 4) / (x - 2)
Ta có thể phân tích tử số thành (x - 2)(x + 2). Khi đó:
lim (x→2) (x^2 - 4) / (x - 2) = lim (x→2) (x - 2)(x + 2) / (x - 2) = lim (x→2) (x + 2) = 2 + 2 = 4
2. Giải lim (x→3) (x^3 - 27) / (x - 3)
Ta có thể phân tích tử số thành (x - 3)(x^2 + 3x + 9). Khi đó:
lim (x→3) (x^3 - 27) / (x - 3) = lim (x→3) (x - 3)(x^2 + 3x + 9) / (x - 3) = lim (x→3) (x^2 + 3x + 9) = 3^2 + 3*3 + 9 = 9 + 9 + 9 = 27
3. Giải lim (x→0) sin(x) / x
Đây là một giới hạn lượng giác cơ bản. Ta có:
lim (x→0) sin(x) / x = 1
4. Giải lim (x→∞) (2x + 1) / (x - 1)
Ta có thể chia cả tử và mẫu cho x:
lim (x→∞) (2x + 1) / (x - 1) = lim (x→∞) (2 + 1/x) / (1 - 1/x) = (2 + 0) / (1 - 0) = 2
Kiến thức về giới hạn có ứng dụng rộng rãi trong nhiều lĩnh vực của Toán học, như:
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 1.8 trang 9 Sách bài tập Toán 12 - Kết nối tri thức và tự tin hơn trong quá trình học tập.
Để hiểu rõ hơn về cách tính giới hạn, chúng ta cùng xem xét một ví dụ khác:
Tính lim (x→1) (x^2 - 1) / (x - 1)
Ta có thể phân tích tử số thành (x - 1)(x + 1). Khi đó:
lim (x→1) (x^2 - 1) / (x - 1) = lim (x→1) (x - 1)(x + 1) / (x - 1) = lim (x→1) (x + 1) = 1 + 1 = 2
Bài tập về giới hạn đòi hỏi học sinh phải nắm vững kiến thức cơ bản và rèn luyện kỹ năng giải toán thường xuyên. Giaitoan.edu.vn sẽ tiếp tục cung cấp các bài giải chi tiết và hướng dẫn học tập hữu ích để giúp các em học sinh đạt kết quả tốt nhất trong môn Toán.