Bài 6.2 trang 42 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.2 trang 42 sách bài tập Toán 12 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Một túi đựng 5 viên bi đỏ và 3 viên bi xanh. Sơn lấy ngẫu nhiên một viên bi đưa cho Tùng rồi Tùng lấy ngẫu nhiên tiếp một viên bi. Tính xác suất để hai viên bi lấy ra có ít nhất một viên bi đỏ.
Đề bài
Một túi đựng 5 viên bi đỏ và 3 viên bi xanh. Sơn lấy ngẫu nhiên một viên bi đưa cho Tùng rồi Tùng lấy ngẫu nhiên tiếp một viên bi. Tính xác suất để hai viên bi lấy ra có ít nhất một viên bi đỏ.
Phương pháp giải - Xem chi tiết
Tìm xác suất của biến cố đối thông qua xác suất có điều kiện.
Lời giải chi tiết
Gọi E là biến cố: “Trong hai viên bi lấy ra có ít nhất một viên bi đỏ”.
Biến cố đối \(\overline E \) là biến cố: “Cả hai viên bi rút ra đều là viên bi xanh”.
Gọi A là biến cố: “Sơn lấy được viên bi xanh”.
B là biến cố: “Tùng lấy được viên bi xanh”.
Khi đó \(\overline E = AB\). Ta có \(P\left( A \right) = \frac{3}{8};{\rm{ }}P\left( {B|A} \right) = \frac{2}{7}\).
\(P\left( {\overline E } \right) = P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{3}{8} \cdot \frac{2}{7} = \frac{3}{{28}}\). Suy ra \(P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - \frac{3}{{28}} = \frac{{25}}{{28}}\).
Bài 6.2 trang 42 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là đề bài và lời giải chi tiết bài 6.2 trang 42 sách bài tập Toán 12 Kết nối tri thức:
Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.
Sử dụng quy tắc tính đạo hàm của hàm số đa thức, ta có:
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Ta xét dấu của f'(x) trên các khoảng:
Vậy:
Kết luận: Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.
Ngoài bài 6.2, sách bài tập Toán 12 Kết nối tri thức còn nhiều bài tập khác liên quan đến đạo hàm. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập này, học sinh cần nắm vững các kiến thức về đạo hàm và luyện tập thường xuyên. Ngoài ra, học sinh có thể tham khảo các tài liệu tham khảo, các bài giảng online để hiểu rõ hơn về các khái niệm và phương pháp giải.
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về bài 6.2 trang 42 sách bài tập Toán 12 Kết nối tri thức và tự tin giải các bài tập tương tự.