Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn cách giải bài 2.26 trang 54 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Trong không gian (Oxyz), cho hai vectơ (overrightarrow a = left( {m;3;6} right),{rm{ }}overrightarrow {rm{b}} {rm{ = }}left( {1;2;3} right)). Xác định giá trị của (m) trong mỗi trường hợp sau: a) (overrightarrow a - 2overrightarrow b = left( {3; - 1;0} right)). b) (overrightarrow a cdot overrightarrow b = 10). c) (left| {overrightarrow a } right| = 9).
Đề bài
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {m;3;6} \right),{\rm{ }}\overrightarrow {\rm{b}} {\rm{ = }}\left( {1;2;3} \right)\).
Xác định giá trị của \(m\) trong mỗi trường hợp sau:
a) \(\overrightarrow a - 2\overrightarrow b = \left( {3; - 1;0} \right)\).
b) \(\overrightarrow a \cdot \overrightarrow b = 10\).
c) \(\left| {\overrightarrow a } \right| = 9\).
Phương pháp giải - Xem chi tiết
Ý a: Tính \(\overrightarrow a - 2\overrightarrow b \) phụ thuộc tham số m sau đó giải từng điều kiện của tọa độ.
Ý b: Tính \(\overrightarrow a \cdot \overrightarrow b \) theo tham số m sau đó giải theo điều kiện đề bài để tìm m.
Ý c: Tính \(\left| {\overrightarrow a } \right|\) theo m sau đó giải theo điều kiện của đề để tìm m.
Lời giải chi tiết
a) Ta có \(\overrightarrow a - 2\overrightarrow b = \left( {m - 2; - 1;0} \right)\). Để \(\overrightarrow a - 2\overrightarrow b = \left( {3; - 1;0} \right)\) thì \(\left\{ \begin{array}{l}m - 2 = 3\\ - 1 = - 1\\0 = 0\end{array} \right. \Leftrightarrow m = 5\).
b) Ta có \(\overrightarrow a \cdot \overrightarrow b = m + 6 + 18 = m + 24\). Để \(\overrightarrow a \cdot \overrightarrow b = 10\) thì \(m + 24 = 10 \Leftrightarrow m = - 14\)
c) Ta có \(\left| {\overrightarrow a } \right| = \sqrt {{m^2} + {3^3} + {6^2}} = \sqrt {{m^2} + 45} \).
Để \(\left| {\overrightarrow a } \right| = 9\) thì \(\sqrt {{m^2} + 45} = 9 \Leftrightarrow {m^2} + 45 = 81 \Leftrightarrow m = \pm 6\).
Bài 2.26 trang 54 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tính đơn điệu, cực trị của hàm số, hoặc các bài toán ứng dụng thực tế.
Để giải quyết bài 2.26 trang 54, trước tiên cần xác định rõ yêu cầu của bài toán. Thông thường, bài tập sẽ đưa ra một hàm số và yêu cầu:
Để giải bài tập 2.26 trang 54 hiệu quả, bạn có thể áp dụng các phương pháp sau:
Giả sử bài tập 2.26 yêu cầu tìm cực trị của hàm số f(x) = x3 - 3x2 + 2.
Bước 1: Tính đạo hàm
f'(x) = 3x2 - 6x
Bước 2: Tìm điểm cực trị
Giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy x = 0 hoặc x = 2
Bước 3: Xác định loại cực trị
Xét dấu f'(x) trên các khoảng:
Vậy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Bước 4: Tính giá trị cực trị
f(0) = 2 (cực đại)
f(2) = -2 (cực tiểu)
Để học tốt hơn về đạo hàm và các ứng dụng của đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 2.26 trang 54 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!