Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 14 trang 50 Sách bài tập Toán 12 - Kết nối tri thức. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ quá trình học tập của bạn. Hãy cùng theo dõi và tham khảo lời giải chi tiết dưới đây.
Trong không gian Oxyz, cho đường thẳng (Delta :frac{{x - 3}}{2} = frac{{y + 1}}{1} = frac{{z + 4}}{{ - 3}}). Một vectơ chỉ phương của đường thẳng (Delta ) là A. (overrightarrow {{u_1}} = left( {3; - 1; - 4} right)). B. (overrightarrow {{u_2}} = left( { - 4; - 2;6} right)). C. (overrightarrow {{u_3}} = left( {2;1;3} right)). D. (overrightarrow {{u_4}} = left( {3;1;4} right)).
Đề bài
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z + 4}}{{ - 3}}\). Một vectơ chỉ phương của đường thẳng \(\Delta \) là
A. \(\overrightarrow {{u_1}} = \left( {3; - 1; - 4} \right)\).
B. \(\overrightarrow {{u_2}} = \left( { - 4; - 2;6} \right)\).
C. \(\overrightarrow {{u_3}} = \left( {2;1;3} \right)\).
D. \(\overrightarrow {{u_4}} = \left( {3;1;4} \right)\).
Phương pháp giải - Xem chi tiết
Ôn tập công thức của phương trình đường thẳng theo đoạn chắn.
Lời giải chi tiết
Ta có \(\Delta :\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z + 4}}{{ - 3}}\) là phương trình theo đoạn chắn của đường thẳng \(\Delta \).
Do đó một vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u = \left( {2;1; - 3} \right)\).
Trong 4 đáp án, ta chọn đáp án có chứa vectơ cùng phương với \(\overrightarrow u \).
Dễ thấy ở đáp án B \(\overrightarrow {{u_2}} = \left( { - 4; - 2;6} \right)\) là vectơ thỏa mãn \(\overrightarrow {{u_2}} = - 2\overrightarrow {{u_1}} \). Do đó \(\overrightarrow {{u_2}} = \left( { - 4; - 2;6} \right)\) là một vec tơ chỉ phương của \(\Delta \).
Đáp án B.
Bài 14 trang 50 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 14 trang 50 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng dạng bài tập cụ thể.
Để tìm đạo hàm của một hàm số, chúng ta cần áp dụng các quy tắc tính đạo hàm đã học. Ví dụ, nếu hàm số có dạng y = f(x) + g(x), thì đạo hàm của hàm số là y' = f'(x) + g'(x). Tương tự, nếu hàm số có dạng y = f(x) * g(x), thì đạo hàm của hàm số là y' = f'(x) * g(x) + f(x) * g'(x).
Khi giải phương trình, bất phương trình sử dụng đạo hàm, chúng ta cần tìm các điểm cực trị của hàm số và xét dấu đạo hàm trên các khoảng xác định. Nếu đạo hàm dương trên một khoảng, thì hàm số đồng biến trên khoảng đó. Nếu đạo hàm âm trên một khoảng, thì hàm số nghịch biến trên khoảng đó.
Để khảo sát hàm số bằng đạo hàm, chúng ta cần thực hiện các bước sau:
Các bài toán tối ưu hóa thường yêu cầu chúng ta tìm giá trị lớn nhất hoặc nhỏ nhất của một hàm số trên một khoảng xác định. Để giải các bài toán này, chúng ta cần tìm các điểm cực trị của hàm số và so sánh giá trị của hàm số tại các điểm đó với giá trị của hàm số tại các mút của khoảng xác định.
Khi giải bài tập về đạo hàm, các em cần lưu ý những điều sau:
Bài 14 trang 50 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng rằng với lời giải chi tiết và những lưu ý trên, các em sẽ giải quyết bài tập này một cách hiệu quả.
Dạng bài | Phương pháp giải |
---|---|
Tìm đạo hàm | Áp dụng quy tắc tính đạo hàm |
Giải phương trình/bất phương trình | Xét dấu đạo hàm, tìm cực trị |
Khảo sát hàm số | Thực hiện các bước khảo sát hàm số |
Tối ưu hóa | Tìm cực trị và so sánh giá trị |