Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài 1.47 trang 32 một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng cung cấp những lời giải rõ ràng, chi tiết và dễ tiếp thu nhất.
Doanh thu (R) (USD) từ vệc cho thuê (x) căn hộ có thể được mô hình hóa bằng hàm số (R = 2xleft( {900 + 32x - {x^2}} right)). a) Tìm hàm doanh thu biên. b) Tìm doanh thu biên khi (x = 14) và giải thích ý nghĩa thực tiễn của nó. c) Tìm lượng doanh thu tăng thêm khi số căn hộ cho thuê tăng từ (14) lên (15).
Đề bài
Doanh thu \(R\) (USD) từ vệc cho thuê \(x\) căn hộ có thể được mô hình hóa bằng hàm số
\(R = 2x\left( {900 + 32x - {x^2}} \right)\).
a) Tìm hàm doanh thu biên.
b) Tìm doanh thu biên khi \(x = 14\) và giải thích ý nghĩa thực tiễn của nó.
c) Tìm lượng doanh thu tăng thêm khi số căn hộ cho thuê tăng từ \(14\) lên \(15\).
Phương pháp giải - Xem chi tiết
Ý a: Hàm doanh thu biên là \(R'\).
Ý b: Tính \(R'\left( {14} \right)\), ý nghĩa là doanh thu tăng thêm khi cho thuê một căn hộ nữa.
Ý c: Tính \(R\left( {15} \right) - R\left( {14} \right)\) và so sánh với kết quả ý b.
Lời giải chi tiết
a) Hàm doanh thu biên là \(R' = 1800 + 128x - 6{x^2}\).
b) Hàm doanh thu biên khi \(x = 14\) là \(R'\left( {14} \right) = 1800 + 128 \cdot 14 - 6 \cdot {14^2} = 2416\).
Điều này nghĩa là doanh thu tăng thêm khi cho thuê một căn hộ nữa (tức là cho thuê căn hộ thứ 15) là khoảng \(2416\) USD.
c) Doanh thu khi cho thuê 14 căn hộ là \(R\left( {14} \right) = 2 \cdot 14\left( {900 + 32 \cdot 14 - {{14}^2}} \right) = 32256\) (USD).
Doanh thu khi cho thuê 15 căn hộ là \(R\left( {15} \right) = 2 \cdot 15\left( {900 + 32 \cdot 15 - {{15}^2}} \right) = 34650\) (USD).
Ta có \(R\left( {15} \right) - R\left( {14} \right) = 2394\). Do đó khi số căn hộ cho thuê tăng từ 14 lên 15 thì doanh thu tăng thêm \(2394\) USD, xấp xỉ với mức đã tính ở ý b.
Bài 1.47 trang 32 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm. Bài toán này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
Bài 1.47 thường xoay quanh việc tìm đạo hàm của một hàm số, xác định các điểm cực trị, hoặc giải các bài toán liên quan đến ứng dụng của đạo hàm trong việc khảo sát hàm số. Cụ thể, bài toán có thể yêu cầu:
Để giải bài 1.47 trang 32 sách bài tập Toán 12 - Kết nối tri thức, bạn cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho bài 1.47 trang 32 sách bài tập Toán 12 - Kết nối tri thức (ví dụ với một hàm số cụ thể):
Ví dụ: Giải bài 1.47 trang 32 với hàm số f(x) = x3 - 3x2 + 2.
Bước 1: Tính đạo hàm f'(x)
f'(x) = 3x2 - 6x
Bước 2: Tìm các điểm cực trị
Giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Bước 3: Xác định loại cực trị
Xét dấu f'(x) trên các khoảng:
Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Bước 4: Tính giá trị cực đại và cực tiểu
f(0) = 2 (cực đại)
f(2) = 8 - 12 + 2 = -2 (cực tiểu)
Kết luận: Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.
Khi giải bài 1.47 trang 32 và các bài tập tương tự, bạn cần:
Để củng cố kiến thức và kỹ năng giải toán, bạn có thể tham khảo các bài tập tương tự trong sách bài tập Toán 12 - Kết nối tri thức và các nguồn tài liệu học tập khác.
Bài 1.47 trang 32 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!