Bài 1.58 trang 34 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hàm số \(y = \frac{{2{x^2} - 4x + 2}}{{{x^2} - 6x + 5}}\). Mệnh đề nào sau đây là đúng? A. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số. B. Đồ thị hàm số có hai tiệm cận đứng. C. Đồ thị hàm số không có tiệm cận ngang. D. Đường thẳng \(x = 5\) là tiệm cận đứng của đồ thị hàm số.
Đề bài
Cho hàm số \(y = \frac{{2{x^2} - 4x + 2}}{{{x^2} - 6x + 5}}\). Mệnh đề nào sau đây là đúng?
A. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số.
B. Đồ thị hàm số có hai tiệm cận đứng.
C. Đồ thị hàm số không có tiệm cận ngang.
D. Đường thẳng \(x = 5\) là tiệm cận đứng của đồ thị hàm số.
Phương pháp giải - Xem chi tiết
Tìm tất cả các tiệm cận đứng và ngang của đồ thị hàm số (nếu có), từ đó sẽ chọn được đáp án đúng.
Lời giải chi tiết
Đáp án: D.
Tập xác định \(\mathbb{R}\backslash \left\{ {1;5} \right\}\).
Ta có \(y = \frac{{2{x^2} - 4x + 2}}{{{x^2} - 6x + 5}} \Leftrightarrow y = \frac{{2\left( {x - 1} \right)}}{{x - 5}}\)
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2\left( {x - 1} \right)}}{{x - 5}} = 2\) suy ra tiệm cận ngang của đồ thị là đường thẳng \(y = 2\). Do đó đáp án C sai.
Ta có \(y = \frac{{2{x^2} - 4x + 2}}{{{x^2} - 6x + 5}} \Leftrightarrow y = \frac{{2\left( {x - 1} \right)}}{{x - 5}}\)
\(\mathop {\lim }\limits_{x \to {5^ + }} \frac{{2\left( {x - 1} \right)}}{{x - 5}} = + \infty \) suy ra tiệm cận đứng của đồ thị là đường thẳng \(x = 5\). Suy ra D đúng và A, C sai. Vậy ta chọn đáp án D.
Bài 1.58 trang 34 sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Nội dung bài tập 1.58:
Bài tập yêu cầu tính đạo hàm của hàm số tại một điểm cho trước hoặc tìm điều kiện để hàm số có đạo hàm tại một điểm. Đôi khi, bài tập còn yêu cầu sử dụng đạo hàm để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
Lời giải chi tiết:
Để giải bài tập 1.58, chúng ta sẽ thực hiện các bước sau:
Ví dụ minh họa:
Giả sử hàm số cần tính đạo hàm là f(x) = x2 + 2x + 1. Để tính đạo hàm của hàm số này, chúng ta sử dụng quy tắc đạo hàm của hàm đa thức:
f'(x) = 2x + 2
Nếu chúng ta muốn tính đạo hàm của hàm số tại điểm x = 1, chúng ta thay x = 1 vào đạo hàm:
f'(1) = 2(1) + 2 = 4
Vậy, đạo hàm của hàm số f(x) = x2 + 2x + 1 tại điểm x = 1 là 4.
Các dạng bài tập thường gặp:
Mẹo giải bài tập:
Tài liệu tham khảo:
Kết luận:
Bài 1.58 trang 34 sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các quy tắc tính đạo hàm và luyện tập thường xuyên, các em học sinh có thể tự tin giải quyết bài tập này và các bài tập tương tự.
Giaitoan.edu.vn hy vọng rằng lời giải chi tiết và hướng dẫn giải bài tập 1.58 trang 34 sách bài tập Toán 12 - Kết nối tri thức này sẽ giúp các em học sinh học tập hiệu quả và đạt kết quả tốt trong môn Toán.
Hàm số | Đạo hàm |
---|---|
f(x) = xn | f'(x) = nxn-1 |
f(x) = sin(x) | f'(x) = cos(x) |
f(x) = cos(x) | f'(x) = -sin(x) |