Bài 4.48 trang 21 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.48 trang 21 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Một ô tô đồ chơi trượt xuống dốc và dừng lại sau 5 giây, vận tốc của ô tô đồ chơi từ thời điểm \(t = 0\) giây đến \(t = 5\) giây được cho bởi công thức: \(v\left( t \right) = \frac{1}{2}{t^2} - 0,1{t^3}\)(m/s). Tính quãng đường ô tô đồ chơi đi đến khi dừng lại(làm tròn kết quả theo đơn vị mét đến chữ số thập phân thứ hai).
Đề bài
Một ô tô đồ chơi trượt xuống dốc và dừng lại sau 5 giây, vận tốc của ô tô đồ chơi từ thời điểm \(t = 0\) giây đến \(t = 5\) giây được cho bởi công thức:
\(v\left( t \right) = \frac{1}{2}{t^2} - 0,1{t^3}\)(m/s).
Tính quãng đường ô tô đồ chơi đi đến khi dừng lại(làm tròn kết quả theo đơn vị mét đến chữ số thập phân thứ hai).
Phương pháp giải - Xem chi tiết
Quãng đường cần tìm được tính bởi công thức \(\int\limits_0^5 {v\left( t \right)dt} \).
Lời giải chi tiết
Quãng đường ô tô đồ chơi đi đến khi dừng lại là
\(\int\limits_0^5 {v\left( t \right)dt} = \int\limits_0^5 {\left( {\frac{1}{2}{t^2} - 0,1{t^3}} \right)dt} = \left. {\left( {\frac{{{t^3}}}{6} - \frac{{0,1{t^4}}}{4}} \right)} \right|_0^5 = \frac{{125}}{{24}} \approx 5,21\)(m).
Bài 4.48 trang 21 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là đề bài và lời giải chi tiết bài 4.48 trang 21 Sách bài tập Toán 12 - Kết nối tri thức:
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Để tìm các điểm cực trị của hàm số f(x), ta thực hiện các bước sau:
Bước 1: Tính đạo hàm f'(x)
f'(x) = 3x2 - 6x
Bước 2: Giải phương trình f'(x) = 0
3x2 - 6x = 0
3x(x - 2) = 0
Suy ra x = 0 hoặc x = 2
Vậy, hàm số có hai điểm dừng là x = 0 và x = 2.
Bước 3: Xét dấu đạo hàm f'(x)
Ta xét các khoảng sau:
Từ việc xét dấu đạo hàm, ta thấy:
Kết luận:
Hàm số f(x) = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.
Để hiểu sâu hơn về bài toán này, các em có thể tìm hiểu thêm về:
Giaitoan.edu.vn hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 4.48 trang 21 Sách bài tập Toán 12 - Kết nối tri thức và tự tin hơn trong quá trình học tập.