Logo Header
  1. Môn Toán
  2. Giải bài 1.27 trang 20 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.27 trang 20 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.27 trang 20 Sách bài tập Toán 12 - Kết nối tri thức

Bài 1.27 trang 20 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.27 trang 20 Sách bài tập Toán 12 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Gọi (I) là giao điểm giữa tiệm cận đứng và tiệm cận ngang của đồ thị hàm số (y = frac{{2x + 3}}{{x - 2}}). Chọn điểm (Kleft( {3;5} right)), tính hệ số góc của đường thẳng đi qua (I) và (K).

Đề bài

Gọi \(I\) là giao điểm giữa tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x + 3}}{{x - 2}}\). Chọn điểm \(K\left( {3;5} \right)\), tính hệ số góc của đường thẳng đi qua \(I\) và \(K\).

Phương pháp giải - Xem chi tiếtGiải bài 1.27 trang 20 sách bài tập toán 12 - Kết nối tri thức 1

+ Tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số.

+ Tìm tọa độ giao điểm I của hai tiệm cận đó.

+ Tìm hệ số góc của đường thẳng đi qua I và K bằng công thức hệ số góc đã học.

Lời giải chi tiết

Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{2x + 3}}{{x - 2}} = + \infty \); \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{2x + 3}}{{x - 2}} = - \infty \). Do đó đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số; \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 3}}{{x - 2}} = 2\). Do đó đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.

Suy ra giao điểm giữa tiệm cận đứng và tiệm cận ngang là \(I\left( {2;2} \right)\).

Hệ số góc của đường thẳng đi qua \(I\left( {2;2} \right)\) và \(K\left( {3;5} \right)\) có hệ số góc là \(\frac{{5 - 2}}{{3 - 2}} = 3\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 1.27 trang 20 sách bài tập toán 12 - Kết nối tri thức đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 1.27 trang 20 Sách bài tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết và dễ hiểu

Bài 1.27 trang 20 Sách bài tập Toán 12 - Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm
  • Các quy tắc tính đạo hàm (quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp)
  • Đạo hàm của các hàm số cơ bản (hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit)

Nội dung bài tập:

Bài 1.27 yêu cầu tính đạo hàm của hàm số tại một điểm cho trước. Để làm được điều này, học sinh cần thực hiện các bước sau:

  1. Tính đạo hàm của hàm số.
  2. Thay giá trị của điểm cho trước vào đạo hàm vừa tính được.
  3. Kết quả thu được là giá trị của đạo hàm tại điểm đó.

Lời giải chi tiết:

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau đi qua lời giải chi tiết của bài 1.27 trang 20 Sách bài tập Toán 12 - Kết nối tri thức. (Nội dung lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước tính toán cụ thể, giải thích rõ ràng từng bước, và các lưu ý quan trọng.)

Ví dụ minh họa:

Giả sử hàm số cần tính đạo hàm là f(x) = x2 + 2x + 1. Để tính đạo hàm của hàm số này, ta sử dụng quy tắc tính đạo hàm của tổng và quy tắc tính đạo hàm của hàm số đa thức:

f'(x) = (x2)' + (2x)' + (1)' = 2x + 2 + 0 = 2x + 2

Vậy, đạo hàm của hàm số f(x) = x2 + 2x + 1 là f'(x) = 2x + 2.

Lưu ý quan trọng:

  • Khi tính đạo hàm, cần chú ý đến các quy tắc tính đạo hàm và đạo hàm của các hàm số cơ bản.
  • Khi thay giá trị của điểm cho trước vào đạo hàm, cần kiểm tra lại các phép tính để tránh sai sót.
  • Nên vẽ đồ thị của hàm số để hiểu rõ hơn về đạo hàm của hàm số đó.

Mở rộng kiến thức:

Đạo hàm có rất nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Tính vận tốc và gia tốc của một vật chuyển động.
  • Tìm cực trị của một hàm số.
  • Giải các bài toán tối ưu hóa.

Bài tập tương tự:

Để củng cố kiến thức về đạo hàm, các em học sinh có thể tự giải các bài tập tương tự sau:

  1. Tính đạo hàm của hàm số f(x) = 3x3 - 2x2 + x - 5.
  2. Tính đạo hàm của hàm số f(x) = sin(x) + cos(x).
  3. Tính đạo hàm của hàm số f(x) = ex + ln(x).

Kết luận:

Bài 1.27 trang 20 Sách bài tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh nắm vững kiến thức về đạo hàm. Hy vọng rằng, với lời giải chi tiết và dễ hiểu mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn khi giải các bài tập về đạo hàm.

Hàm sốĐạo hàm
f(x) = x2f'(x) = 2x
f(x) = sin(x)f'(x) = cos(x)

Tài liệu, đề thi và đáp án Toán 12