Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều

Giải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều

Giải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu, nhanh chóng và chính xác.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em giải quyết mọi khó khăn trong môn Toán.

Vẽ đồ thị của mỗi hàm số sau

Đề bài

Vẽ đồ thị của mỗi hàm số sau:

a) \(y = {x^2} - 3x - 4\)

b) \(y = {x^2} + 4x + 4\)

c) \(y = - {x^2} + 2x - 2\)

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều 1

Bước 1: Xác định tọa độ đỉnh \(\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\)

Bước 2: Vẽ trục đối xứng \(x = - \frac{b}{{2a}}\)

Bước 3: Xác định một số điểm đặc biệt, chẳng hạn giao điểm với trục tung (0;c) và trục hoành (nếu có), điểm đối xứng với điểm (0;c) qua trục \(x = - \frac{b}{{2a}}\).

Bước 4: Vẽ đường parabol đi qua các điểm đã xác định ta nhận được đồ thị hàm số \(y = a{x^2} + bx + c\).

Lời giải chi tiết

a) \(y = {x^2} - 3x - 4\)

Đồ thị hàm số có đỉnh \(I\left( {\dfrac{3}{2}; - \dfrac{{25}}{4}} \right)\)

Trục đối xứng là \(x = \dfrac{3}{2}\)

Giao điểm của parabol với trục tung là (0;-4)

Giao điểm của parabol với trục hoành là (-1;0) và (4;0)

Điểm đối xứng với điểm (0;-4) qua trục đối xứng \(x = \frac{3}{2}\) là (3;-4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

Giải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều 2

b) \(y = {x^2} + 4x + 4\)

Đồ thị hàm số có đỉnh \(I\left( { - 2;0} \right)\)

Trục đối xứng là \(x = - 2\)

Giao điểm của parabol với trục tung là (0;4)

Giao điểm của parabol với trục hoành là I(-2;0)

Điểm đối xứng với điểm (0;4) qua trục đối xứng \(x = - 2\) là (-4;4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

Giải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều 3

c) \(y = - {x^2} + 2x - 2\)

Đồ thị hàm số có đỉnh \(I\left( {1; - 1} \right)\)

Trục đối xứng là \(x = 1\)

Giao điểm của parabol với trục tung là (0;-2)

Điểm đối xứng với điểm (0;-2) qua trục đối xứng \(x = 1\) là (2;-2)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

Giải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều 4

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều đặc sắc thuộc chuyên mục học toán 10 trên nền tảng soạn toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều: Tổng quan

Bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.

Nội dung chi tiết bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều

Bài 5 bao gồm một số câu hỏi và bài tập nhỏ, mỗi câu hỏi/bài tập tập trung vào một khía cạnh khác nhau của kiến thức về tập hợp. Dưới đây là phân tích chi tiết từng phần của bài tập:

Câu a: Xác định các tập hợp

Câu a thường yêu cầu học sinh xác định các tập hợp dựa trên các điều kiện cho trước. Ví dụ, cho một tập hợp A các số tự nhiên chia hết cho 3 và nhỏ hơn 20, yêu cầu học sinh liệt kê các phần tử của tập hợp A. Để giải quyết bài toán này, học sinh cần nắm vững định nghĩa về tập hợp và các điều kiện để một phần tử thuộc tập hợp.

Câu b: Thực hiện các phép toán trên tập hợp

Câu b thường yêu cầu học sinh thực hiện các phép toán trên tập hợp, như phép hợp, giao, hiệu, bù. Ví dụ, cho hai tập hợp A và B, yêu cầu học sinh tìm tập hợp A ∪ B (hợp của A và B), A ∩ B (giao của A và B), A \ B (hiệu của A và B), và CAB (bù của B trong A). Để giải quyết bài toán này, học sinh cần nắm vững định nghĩa và công thức của các phép toán trên tập hợp.

Câu c: Chứng minh các đẳng thức liên quan đến tập hợp

Câu c thường yêu cầu học sinh chứng minh các đẳng thức liên quan đến tập hợp, như A ∪ B = B ∪ A, A ∩ B = B ∩ A, A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). Để giải quyết bài toán này, học sinh cần sử dụng các tính chất của các phép toán trên tập hợp và các quy tắc logic.

Phương pháp giải bài tập về tập hợp

Để giải quyết các bài tập về tập hợp một cách hiệu quả, học sinh cần:

  • Nắm vững định nghĩa về tập hợp và các phần tử của tập hợp.
  • Hiểu rõ các phép toán trên tập hợp và các tính chất của chúng.
  • Sử dụng các công thức và quy tắc logic để chứng minh các đẳng thức.
  • Thực hành giải nhiều bài tập khác nhau để làm quen với các dạng bài tập và rèn luyện kỹ năng giải toán.

Ví dụ minh họa

Ví dụ 1: Cho A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A ∪ B, A ∩ B, A \ B, và CAB.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6, 7}
  • A ∩ B = {3, 4, 5}
  • A \ B = {1, 2}
  • CAB = {1, 2}

Bài tập luyện tập

Để củng cố kiến thức về tập hợp, các em có thể tự giải các bài tập sau:

  1. Cho A = {a, b, c, d} và B = {b, d, e, f}. Tìm A ∪ B, A ∩ B, A \ B, và CAB.
  2. Chứng minh rằng A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
  3. Cho A = {x | x là số chẵn nhỏ hơn 10} và B = {x | x là số lẻ nhỏ hơn 10}. Tìm A ∪ B và A ∩ B.

Kết luận

Bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều là một bài tập quan trọng giúp học sinh nắm vững kiến thức về tập hợp và các phép toán trên tập hợp. Bằng cách hiểu rõ định nghĩa, công thức, và phương pháp giải bài tập, các em có thể tự tin giải quyết mọi bài toán liên quan đến tập hợp.

Tài liệu, đề thi và đáp án Toán 10