Logo Header
  1. Môn Toán
  2. Giải bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều

Giải bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều

Giải bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Cho mẫu số liệu: 1 2 4 5 9 10 11 a) Số trung bình cộng của mẫu số liệu trên là:

Đề bài

Cho mẫu số liệu: 1 2 4 5 9 10 11

a) Số trung bình cộng của mẫu số liệu trên là:

A. 5. B. 5,5. C.6. D. 6,5.

b) Trung vị của mẫu số liệu trên là:

A. 5. B. 5,5. C. 6. D. 6,5.

c) Tứ phân vị của mẫu số liệu trên là:

A.\({Q_1}{\rm{ }} = {\rm{ }}4,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}9\) .

B.\({Q_1}{\rm{ }} = {\rm{ }}1,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}11\) .

C.\({Q_1}{\rm{ }} = {\rm{ }}1,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}11\) .

D.\({Q_1}{\rm{ }} = {\rm{ }}2,{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}5,{Q_3} = {\rm{ }}10\) .

d) Khoảng biến thiên của mẫu số liệu trên là:

A. 5. B. 6. C. 10. D. 11.

e) Khoảng tứ phân vị của mẫu số liệu trên là:

A. 7. B. 8. C. 9. D. 10.

g) Phương sai của mẫu số liệu trên là:

A.\(\sqrt {\frac{{96}}{7}} \) B.\(\frac{{96}}{7}\) C. 96. D.\(\sqrt {96} \) .

h) Độ lệch chuẩn của mẫu số liệu trên là:

A.\(\sqrt {\frac{{96}}{7}} \) B.\(\frac{{96}}{7}\) C. 96. D.\(\sqrt {96} \) .

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều 1

a) Sử dụng định nghĩa số trung bình cộng : \(\overline x = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)

b) Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \({X_1},{X_2},...,{X_n}\)

Bước 2: Trung vị \({Q_2} = {M_e} = \left\{ \begin{array}{l}{X_{k + 1}}\quad \quad \quad \quad \quad (n = 2k + 1)\\\frac{1}{2}({X_k} + {X_{k + 1}})\quad \;\,(n = 2k)\end{array} \right.\)

c) Sắp xếp mẫu số liệu theo thứ tự không giảm: \({X_1},{X_2},...,{X_n}\)

\({Q_1}\) là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

\({Q_3}\) là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

Tứ phân vị là \({Q_1},{Q_2},{Q_3}\)

d) Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \({X_1},{X_2},...,{X_n}\)

Bước 2: Khoảng biến thiên: \(R = {X_n} - {X_1}\)

e) Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\)

g) Tính phương sai \({s^2} = \frac{1}{n}\left[ {{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}} \right]\)

h) Độ lệch chuẩn \(s = \sqrt {{s^2}} \)

Lời giải chi tiết

*) Sắp xếp thứ tự của mẫu số liệu theo thứ tự không giảm ta được: 1 2 4 5 9 10 11

a) Số trung bình cộng của mẫu số liệu trên là: \(\overline x = \frac{{1{\rm{ + }}2{\rm{ + }}4{\rm{ + }}5{\rm{ + }}9{\rm{ + }}10{\rm{ + }}11}}{7} = 6\)

b) Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 7 số liệu ( lẻ ) nên trung vị \({Q_2} = 5\)

c) Tứ phân vị của mẫu số liệu trên là:

 Trung vị của dãy 1, 2, 4 là: \({Q_1} = 2\)

Trung vị của dãy 9, 10, 11 là: \({Q_3} = 10\)

Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 2\), \({Q_2} = 5\), \({Q_3} = 10\)

d) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 11 - 1 = 10\)

e) Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 10 - 2 = 8\)

g) Phương sai của mẫu số liệu trên là: \({s^2} = \frac{{\left[ {{{\left( {1 - \overline x } \right)}^2} + {{\left( {2 - \overline x } \right)}^2} + ... + {{\left( {11 - \overline x } \right)}^2}} \right]}}{7} = \frac{{96}}{7}\)

h) Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} = \sqrt {\frac{{96}}{7}} \)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng tài liệu toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều: Tổng quan

Bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong mặt phẳng để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều thường bao gồm các dạng bài tập sau:

  • Tìm tọa độ của vectơ: Cho các điểm A, B, C, yêu cầu tìm tọa độ của vectơ AB, AC, BC.
  • Thực hiện các phép toán vectơ: Tính tổng, hiệu của hai vectơ, tính tích của một số với vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh đẳng thức vectơ.
  • Ứng dụng vectơ vào hình học: Sử dụng vectơ để chứng minh các tính chất của hình học như tính chất của hình bình hành, hình chữ nhật, hình thoi, hình vuông.

Lời giải chi tiết bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều

Để giải bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều, bạn cần thực hiện theo các bước sau:

  1. Xác định các vectơ cần tính toán: Dựa vào đề bài, xác định các vectơ cần tìm tọa độ, thực hiện các phép toán.
  2. Sử dụng công thức tính tọa độ của vectơ: Nếu A(xA, yA) và B(xB, yB) thì vectơ AB có tọa độ (xB - xA, yB - yA).
  3. Thực hiện các phép toán vectơ:
    • Phép cộng vectơ: Nếu a = (x1, y1) và b = (x2, y2) thì a + b = (x1 + x2, y1 + y2).
    • Phép trừ vectơ: Nếu a = (x1, y1) và b = (x2, y2) thì a - b = (x1 - x2, y1 - y2).
    • Tích của một số với vectơ: Nếu a = (x, y) và k là một số thực thì k.a = (kx, ky).
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là chính xác và phù hợp với đề bài.

Ví dụ minh họa

Ví dụ: Cho A(1, 2) và B(3, 4). Tìm tọa độ của vectơ AB.

Giải: Vectơ AB có tọa độ (3 - 1, 4 - 2) = (2, 2).

Mẹo giải nhanh

  • Nắm vững các công thức tính tọa độ của vectơ và các phép toán vectơ.
  • Vẽ hình để hình dung rõ hơn về bài toán.
  • Sử dụng các tính chất của vectơ để đơn giản hóa bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:

  • Bài 2 trang 53 SGK Toán 10 tập 2 – Cánh diều
  • Bài 3 trang 53 SGK Toán 10 tập 2 – Cánh diều
  • Các bài tập vận dụng trong sách bài tập Toán 10 tập 2 – Cánh diều

Kết luận

Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 1 trang 53 SGK Toán 10 tập 2 – Cánh diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 10