Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải các bài tập trong mục II trang 13, 14 sách giáo khoa Toán 10 tập 1 - Cánh diều.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học một cách hiệu quả.
a) Viết tập hợp A, B bằng cách liệt kê các phần tử của tập hợp. Các mệnh đề sau có đúng không? Chứng tỏ rằng E = G.
Cho hai tập hợp:
\(A = \{ x \in \mathbb{Z}| - 3 < x < 3\} ,\)\(B = \{ x \in \mathbb{Z}| - 3 \le x \le 3\} \)
a) Viết tập hợp A, B bằng cách liệt kê các phần tử của tập hợp.
b) Mỗi phần tử của tập hợp A có thuộc tập hợp B không?
Lời giải chi tiết:
a) \(A = \{ - 2; - 1;0;1;2\} \)
\(B = \{ - 3; - 2; - 1;0;1;2;3\} \)
b) Mỗi phần tử của tập hợp A đều thuộc tập hợp B.
Cho hai tập hợp:
\(A = \{ 0;6;12;18\},\)
\(B = \{ n \in N|\, n \le 18\) và n là bội của 6}.
Các mệnh đề sau có đúng không?
a) \(A \subset B.\)
b) \(B \subset A.\)
Phương pháp giải:
a) Các số 0;6;12;18 đều là các số tự nhiên nhỏ hơn hoặc bằng 18 và là bội của 6. Do đó \(A \subset B\) đúng.
b) Các số tự nhiên nhỏ hơn hoặc bằng 18 và là bội của 6 là: 0; 6; 12; 18 (đều thuộc tập A). Do đó \(B \subset A\) đúng.
Lời giải chi tiết:
a) Nếu n là bội chung của 2 và 3 thì n là bội của 6, hay \(n \in B\)
Vậy mệnh đề \(A \subset B\) đúng.
b) Nếu n là bội 6 thì n vừa là bội của 2 vừa là bội của 3.
Do đó n là bội chung của 2 và 3 hay \(n \in A\).
Vậy mệnh đề \(A \subset B\) đúng.
Cho hai tập hợp:
\(A = \{ n \in N|n\)chia hết cho 3},
\(B = \{ n \in N|n\)chia hết cho 9}.
Chứng tỏ rằng \(B \subset A.\)
Phương pháp giải:
Lấy một phần tử bất kì của tập hợp B, chứng minh phần tử đó thuộc A.
Lời giải chi tiết:
Lấy n bất kì thuộc tập hợp B.
Ta có: n chia hết cho 9 \( \Rightarrow n = 9k\;\;(k \in \mathbb{N})\)
\( \Rightarrow n = 3.(3k)\;\; \vdots \;3\;\;(k \in \mathbb{N})\)
\( \Rightarrow n \in A\)
Như vậy, mọi phần tử của tập hợp B đều là phần tử của tập hợp A hay \(B \subset A.\)
Cho hai tập hợp:
\(E = \{ n \in N|n\) chia hết cho 3 và 4}, và \(G = \{ n \in N|n\) chia hết cho 12}.
Chứng tỏ rằng E = G.
Phương pháp giải:
Ta chứng minh \(E \subset G\) và \(G \subset E\).
Chỉ ra mọi phần tử của tập hợp E đều là phần tử của tập hợp G và ngược lại.
Lời giải chi tiết:
Ta có:
n chia hết cho 3 và 4 \( \Leftrightarrow \)n chia hết cho 12 (do (3,4) =1)
Do đó: nếu n là phần tử của tập hợp A thì n cũng là phần tử của tập hợp B và ngược lại.
Hay mọi phần tử của tập hợp A đều là phần tử của tập hợp B và ngược lại.
Vậy \(E \subset G\) và \(G \subset E\) hay E = G.
Cho hai tập hợp:
\(A = \{ x \in \mathbb{Z}| - 3 < x < 3\} ,\)\(B = \{ x \in \mathbb{Z}| - 3 \le x \le 3\} \)
a) Viết tập hợp A, B bằng cách liệt kê các phần tử của tập hợp.
b) Mỗi phần tử của tập hợp A có thuộc tập hợp B không?
Lời giải chi tiết:
a) \(A = \{ - 2; - 1;0;1;2\} \)
\(B = \{ - 3; - 2; - 1;0;1;2;3\} \)
b) Mỗi phần tử của tập hợp A đều thuộc tập hợp B.
Cho hai tập hợp:
\(A = \{ n \in N|n\)chia hết cho 3},
\(B = \{ n \in N|n\)chia hết cho 9}.
Chứng tỏ rằng \(B \subset A.\)
Phương pháp giải:
Lấy một phần tử bất kì của tập hợp B, chứng minh phần tử đó thuộc A.
Lời giải chi tiết:
Lấy n bất kì thuộc tập hợp B.
Ta có: n chia hết cho 9 \( \Rightarrow n = 9k\;\;(k \in \mathbb{N})\)
\( \Rightarrow n = 3.(3k)\;\; \vdots \;3\;\;(k \in \mathbb{N})\)
\( \Rightarrow n \in A\)
Như vậy, mọi phần tử của tập hợp B đều là phần tử của tập hợp A hay \(B \subset A.\)
Cho hai tập hợp:
\(A = \{ 0;6;12;18\},\)
\(B = \{ n \in N|\, n \le 18\) và n là bội của 6}.
Các mệnh đề sau có đúng không?
a) \(A \subset B.\)
b) \(B \subset A.\)
Phương pháp giải:
a) Các số 0;6;12;18 đều là các số tự nhiên nhỏ hơn hoặc bằng 18 và là bội của 6. Do đó \(A \subset B\) đúng.
b) Các số tự nhiên nhỏ hơn hoặc bằng 18 và là bội của 6 là: 0; 6; 12; 18 (đều thuộc tập A). Do đó \(B \subset A\) đúng.
Lời giải chi tiết:
a) Nếu n là bội chung của 2 và 3 thì n là bội của 6, hay \(n \in B\)
Vậy mệnh đề \(A \subset B\) đúng.
b) Nếu n là bội 6 thì n vừa là bội của 2 vừa là bội của 3.
Do đó n là bội chung của 2 và 3 hay \(n \in A\).
Vậy mệnh đề \(A \subset B\) đúng.
Cho hai tập hợp:
\(E = \{ n \in N|n\) chia hết cho 3 và 4}, và \(G = \{ n \in N|n\) chia hết cho 12}.
Chứng tỏ rằng E = G.
Phương pháp giải:
Ta chứng minh \(E \subset G\) và \(G \subset E\).
Chỉ ra mọi phần tử của tập hợp E đều là phần tử của tập hợp G và ngược lại.
Lời giải chi tiết:
Ta có:
n chia hết cho 3 và 4 \( \Leftrightarrow \)n chia hết cho 12 (do (3,4) =1)
Do đó: nếu n là phần tử của tập hợp A thì n cũng là phần tử của tập hợp B và ngược lại.
Hay mọi phần tử của tập hợp A đều là phần tử của tập hợp B và ngược lại.
Vậy \(E \subset G\) và \(G \subset E\) hay E = G.
Mục II trong SGK Toán 10 tập 1 - Cánh diều tập trung vào các khái niệm cơ bản về tập hợp số, bao gồm tập số thực, các phép toán trên tập số thực, và các tính chất của chúng. Việc nắm vững kiến thức này là nền tảng quan trọng cho các chương trình học Toán ở các lớp trên.
Bài tập này yêu cầu học sinh thực hiện các phép toán cộng, trừ, nhân, chia trên các số thực. Cần lưu ý thứ tự thực hiện các phép toán và các quy tắc về dấu.
Bài tập này tập trung vào việc vận dụng các tính chất giao hoán, kết hợp, phân phối của các phép toán trên tập số thực để đơn giản hóa biểu thức hoặc giải phương trình.
Bài tập này yêu cầu học sinh vận dụng kiến thức về tập số thực để giải các bài toán thực tế, ví dụ như tính diện tích, chu vi, thể tích của các hình học đơn giản.
Hình | Công thức tính diện tích |
---|---|
Hình vuông | S = a2 |
Hình chữ nhật | S = a * b |
Trong đó: a, b là chiều dài các cạnh của hình. |
Để giúp học sinh hiểu rõ hơn về cách giải các bài tập, chúng tôi cung cấp lời giải chi tiết và hướng dẫn từng bước cho từng bài tập. Bạn có thể tham khảo lời giải này để tự kiểm tra và củng cố kiến thức của mình.
Để học tập môn Toán hiệu quả, bạn nên:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức hữu ích về cách giải mục II trang 13, 14 SGK Toán 10 tập 1 - Cánh diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!