Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều

Giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều

Giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu rõ kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em chinh phục môn Toán một cách dễ dàng.

Biểu diễn miền nghiệm của mỗi bất phương trình sau:

Đề bài

Biểu diễn miền nghiệm của mỗi bất phương trình sau:

a) \(x + 2y < 3\);

b) \(3x - 4y \ge - 3\);

c) \(y \ge - 2x + 4\);

d) \(y < 1 - 2x\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều 1

Các bước biểu diễn miền nghiệm:

- Vẽ đường thẳng

- Thay tọa độ điểm O(0;0) vào bất phương trình

- Nếu thỏa mãn thì điểm O nằm trong miền nghiệm, ta gạch phần không chứa O

- Ngược lại thì không nằm trong miền nghiệm ta gạch phần chứa O.

Lời giải chi tiết

a) Ta vẽ đường thẳng d’:\(x + 2y = 3 \Leftrightarrow y = - \frac{x}{2} + \frac{3}{2}\)

Thay tọa độ điểm O(0;0) vào bất phương trình \(x + 2y < 3\) ta được:

\(0 + 2.0 = 0 < 3\) (Luôn đúng)

Vậy O nằm trong miền nghiệm.

Ta có miền nghiệm:

Giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều 2

b) Ta vẽ đường thẳng d:\(3x - 4y = - 3 \Leftrightarrow y = \frac{{3x}}{4} + \frac{3}{4}\)

Thay tọa độ điểm O(0;0) vào bất phương trình \(3x - 4y \ge - 3\) ta được:

\(3.0 - 4.0 = 0 \ge - 3\) (Luôn đúng)

Vậy O nằm trong miền nghiệm.

Ta có miền nghiệm:

Giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều 3

c) Ta vẽ đường thẳng d:\(y = - 2x + 4\)

Thay tọa độ điểm O(0;0) vào bất phương trình \(y \ge - 2x + 4\) ta được:

\(0 \ge - 2.0 + 4 \Leftrightarrow 0 \ge 4\) (Vô lí)

Vậy O không nằm trong miền nghiệm.

Ta có miền nghiệm:

Giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều 4

d) Ta vẽ đường thẳng d:\(y = 1 - 2x\)

Thay tọa độ điểm O(0;0) vào bất phương trình \(y < 1 - 2x\) ta được:

\(0 < 1 - 2.0\) (Luôn đúng)

Vậy O nằm trong miền nghiệm.

Ta có miền nghiệm:

Giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều 5

Chú ý

Đối với các bất phương trình có dấu “<” hoặc “>” thì vẽ đường thẳng là nét đứt.

Đối với các bất phương trình có dấu “\( \le \)” hoặc “\( \ge \)” thì vẽ đường thẳng là nét liền.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều đặc sắc thuộc chuyên mục giải bài tập sgk toán 10 trên nền tảng môn toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều: Tổng quan

Bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này yêu cầu học sinh phải nắm vững định nghĩa, ký hiệu, và các quy tắc liên quan đến tập hợp.

Nội dung bài tập

Bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều thường bao gồm các dạng bài tập sau:

  • Xác định các phần tử của tập hợp: Học sinh cần xác định các phần tử thuộc một tập hợp cho trước dựa trên một tính chất nào đó.
  • Liệt kê các phần tử của tập hợp: Học sinh cần liệt kê tất cả các phần tử của một tập hợp.
  • Kiểm tra một phần tử thuộc hay không thuộc tập hợp: Học sinh cần xác định xem một phần tử cho trước có thuộc một tập hợp hay không.
  • Thực hiện các phép toán trên tập hợp: Học sinh cần thực hiện các phép toán như hợp, giao, hiệu, phần bù của các tập hợp.
  • Chứng minh các đẳng thức tập hợp: Học sinh cần chứng minh các đẳng thức liên quan đến các phép toán trên tập hợp.

Phương pháp giải bài tập

Để giải bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều một cách hiệu quả, học sinh cần:

  1. Nắm vững định nghĩa và ký hiệu: Hiểu rõ định nghĩa của tập hợp, phần tử, và các ký hiệu liên quan.
  2. Áp dụng các quy tắc: Sử dụng các quy tắc về tập hợp để giải quyết các bài toán.
  3. Phân tích bài toán: Đọc kỹ đề bài, xác định rõ yêu cầu và các dữ kiện đã cho.
  4. Sử dụng sơ đồ Venn: Vẽ sơ đồ Venn để minh họa các tập hợp và các phép toán trên tập hợp.
  5. Kiểm tra lại kết quả: Sau khi giải xong, kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Bài tập: Cho A = {1, 2, 3, 4, 5} và B = {3, 4, 5, 6, 7}. Tìm A ∪ B và A ∩ B.

Giải:

  • A ∪ B = {1, 2, 3, 4, 5, 6, 7} (hợp của A và B là tập hợp chứa tất cả các phần tử thuộc A hoặc B).
  • A ∩ B = {3, 4, 5} (giao của A và B là tập hợp chứa tất cả các phần tử thuộc cả A và B).

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về tập hợp, học sinh có thể luyện tập thêm các bài tập sau:

  • Bài 1 trang 24 SGK Toán 10 tập 1 – Cánh diều
  • Bài 3 trang 24 SGK Toán 10 tập 1 – Cánh diều
  • Các bài tập tương tự trong sách bài tập Toán 10 tập 1 – Cánh diều

Tài liệu tham khảo

Học sinh có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về tập hợp:

  • Sách giáo khoa Toán 10 tập 1 – Cánh diều
  • Sách bài tập Toán 10 tập 1 – Cánh diều
  • Các trang web học Toán online uy tín

Kết luận

Bài 2 trang 24 SGK Toán 10 tập 1 – Cánh diều là một bài tập quan trọng giúp học sinh nắm vững kiến thức cơ bản về tập hợp. Bằng cách nắm vững định nghĩa, quy tắc, và phương pháp giải bài tập, học sinh có thể tự tin giải quyết các bài toán liên quan đến tập hợp một cách hiệu quả.

Tài liệu, đề thi và đáp án Toán 10