Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 72 SGK Toán 10 tập 2 – Cánh diều tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em tự tin hơn trong việc học tập môn Toán.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ các em học sinh ôn tập và củng cố kiến thức một cách hiệu quả nhất.
Chứng minh khẳng định sau: Hai vectơ
Đề bài
Chứng minh khẳng định sau: Hai vectơ \(\overrightarrow u = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v \ne 0\) ) cùng phương khi và chỉ khi có một số thực k sao cho \({x_1}{\rm{ = }}k{x_2}\) và \({y_1} = {\rm{ }}k{y_2}\) .
Phương pháp giải - Xem chi tiết
Hai vectơ cùng phương thì tồn tại một số \(k\left( {k \in \mathbb{R}} \right)\) sao cho vectơ này bằng \(k\) lần vectơ kia.
Lời giải chi tiết
Để hai vectơ \(\overrightarrow u = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v = \left( {{x_2},{y_2}} \right)\) (\(\overrightarrow v \ne 0\) ) cùng phương thì phải tồn tại một số \(k\left( {k \in \mathbb{R}} \right)\) sao cho \(\overrightarrow u = k.\overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = k{x_2}\\{y_1} = k{y_2}\end{array} \right.\) ( ĐPCM)
Bài 6 trang 72 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này yêu cầu học sinh vận dụng kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ và các ứng dụng thực tế.
Bài 6 bao gồm một số câu hỏi và bài tập nhỏ, yêu cầu học sinh:
Để giải bài 6 trang 72 SGK Toán 10 tập 2 – Cánh diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Cho hai vectơ a = (2; 3) và b = (-1; 4). Tính a.b.
Lời giải:
a.b = (2)(-1) + (3)(4) = -2 + 12 = 10
Cho hai vectơ a = (1; -2) và b = (3; 1). Tính cosin của góc giữa hai vectơ a và b.
Lời giải:
a.b = (1)(3) + (-2)(1) = 3 - 2 = 1
|a| = √(1² + (-2)²) = √5
|b| = √(3² + 1²) = √10
cos(θ) = (a.b) / (|a||b|) = 1 / (√5 * √10) = 1 / √50 = 1 / (5√2) = √2 / 10
Cho hai vectơ a = (x; y) và b = (1; -1). Tìm x và y sao cho a vuông góc với b.
Lời giải:
Để a vuông góc với b, ta cần a.b = 0.
a.b = (x)(1) + (y)(-1) = x - y = 0
Vậy x = y. Ví dụ, x = 1, y = 1 hoặc x = 2, y = 2,...
Để củng cố kiến thức về tích vô hướng, các em có thể tự giải các bài tập sau:
Bài 6 trang 72 SGK Toán 10 tập 2 – Cánh diều là một bài tập quan trọng giúp học sinh hiểu sâu hơn về tích vô hướng của hai vectơ và các ứng dụng của nó. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng trên đây, các em sẽ tự tin hơn trong việc học tập môn Toán.
Khái niệm | Công thức |
---|---|
Tích vô hướng | a.b = |a||b|cos(θ) |
Góc giữa hai vectơ | cos(θ) = (a.b) / (|a||b|) |