Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 66 SGK Toán 10 tập 2 – Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.
Trong mặt phẳng toạ độ Oxy, cho ba điểm A(2;3), B(-1; 1), C(3;- 1).
Đề bài
Trong mặt phẳng toạ độ Oxy, cho ba điểm A(2;3), B(-1; 1), C(3;- 1).
a) Tìm toạ độ điểm M sao cho\(\overrightarrow {AM{\rm{ }}} = {\rm{ }}\overrightarrow {BC} \) .
b) Tìm toạ độ trung điểm N của đoạn thẳng AC. Chứng minh\(\overrightarrow {BN} {\rm{ }} = {\rm{ }}\overrightarrow {NM} \) .
Phương pháp giải - Xem chi tiết
Với \(\overrightarrow a = \left( {{x_1};{y_1}} \right)\) và \(\overrightarrow b = \left( {{x_2},{y_2}} \right)\) , ta có: \(\overrightarrow a = \overrightarrow b \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\end{array} \right.\)
Lời giải chi tiết
a) Gọi \(M\left( {a;b} \right) \Rightarrow \overrightarrow {AM} = \left( {a - 2;b - 3} \right)\)
Tọa độ vecto \(\overrightarrow {BC} = \left( {4; - 2} \right)\)
Để \(\overrightarrow {AM{\rm{ }}} = {\rm{ }}\overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l}a - 2 = 4\\b - 3 = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 6\\b = 1\end{array} \right.\)
Vậy để \(\overrightarrow {AM{\rm{ }}} = {\rm{ }}\overrightarrow {BC} \) thì tọa độ điểm M là:\(M\left( {6;1} \right)\)
b) Gọi \(N\left( {x,y} \right) \Rightarrow \overrightarrow {NC} = \left( {3 - x, - 1 - y} \right)\)và \(\overrightarrow {AN} = \left( {x - 2,y - 3} \right)\)
Do N là trung điểm AC nên \(\overrightarrow {AN} = \overrightarrow {NC} \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 3 - x\\y - 3 = - 1 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = 1\end{array} \right.\) . Vậy \(N\left( {\frac{5}{2},1} \right)\)
Ta có: \(\overrightarrow {BN} {\rm{ }} = \left( { \frac{7}{2};0} \right)\) và \(\overrightarrow {NM} = \left( {\frac{{ 7}}{2};0} \right)\). Vậy \(\overrightarrow {BN} {\rm{ }} = {\rm{ }}\overrightarrow {NM} \)
Bài 4 trang 66 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này yêu cầu học sinh vận dụng kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ và các ứng dụng thực tế.
Bài 4 trang 66 SGK Toán 10 tập 2 – Cánh diều thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài. Lưu ý rằng, trước khi bắt đầu giải bài tập, các em cần nắm vững các kiến thức cơ bản về vectơ, tích vô hướng và các công thức liên quan.
Cho hai vectơ a = (1; 2) và b = (-3; 4). Tính a.b.
Lời giải:
Tích vô hướng của hai vectơ a và b được tính theo công thức:
a.b = xa.xb + ya.yb
Trong đó, a = (xa; ya) và b = (xb; yb).
Áp dụng công thức, ta có:
a.b = 1.(-3) + 2.4 = -3 + 8 = 5
Vậy, a.b = 5.
Cho hai vectơ u = (2; -1) và v = (1; 3). Tính góc θ giữa hai vectơ.
Lời giải:
Sử dụng công thức:
cos θ = (u.v) / (|u| * |v|)
Trong đó, |u| và |v| là độ dài của vectơ u và v.
Ta có:
u.v = 2.1 + (-1).3 = 2 - 3 = -1
|u| = √(22 + (-1)2) = √5
|v| = √(12 + 32) = √10
Vậy:
cos θ = -1 / (√5 * √10) = -1 / √50 = -1 / (5√2)
θ = arccos(-1 / (5√2)) ≈ 109.47°
Bài 4 trang 66 SGK Toán 10 tập 2 – Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về tích vô hướng của hai vectơ. Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, các em sẽ tự tin giải quyết bài tập này một cách hiệu quả.