Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 54 SGK Toán 10 tập 2 – Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu, nhanh chóng và chính xác.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em giải quyết mọi khó khăn trong môn Toán.
Trong một buổi khiêu vũ có đúng 10 cặp vợ chồng. Chọn ngẫu nhiên 2 người lên khiêu vũ đầu tiên. Xác suất của biến cố “Chọn được 2 người là vợ chồng” bằng bao nhiêu?
Đề bài
Trong một buổi khiêu vũ có đúng 10 cặp vợ chồng. Chọn ngẫu nhiên 2 người lên khiêu vũ đầu tiên. Xác suất của biến cố “Chọn được 2 người là vợ chồng” bằng bao nhiêu?
Phương pháp giải - Xem chi tiết
Bước 1: Tính số phần tử của không gian mẫu “\(n\left( \Omega \right)\)” và số phần tử của kết quả có lợi cho biến cố “\(n\left( A \right)\)” trong đó A là biến cố “Chọn được 2 người là vợ chồng”
Bước 2: Xác suất của biến cố là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\)
Lời giải chi tiết
Chọn ngẫu nhiên 2 người từ 20 người ta được một tổ hợp chập 2 của 20. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_{20}^2\)( phần tử)
Gọi A là biến cố “Chọn được 2 người là vợ chồng”
Để chọn được 1 cặp vợ chồng lên khiêu vũ từ 10 cặp vợ chồng ta được một tổ hợp chập 1 của 10 phần tử. Do đó số phần tử của biến cố A là: \(n\left( A \right) = C_{10}^1\)( phần tử)
Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{10}^1}}{{C_{20}^2}} = \frac{1}{{19}}\)
Bài 7 trang 54 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong mặt phẳng để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 7 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Đề bài: Cho hai vectơ a và b. Tìm vectơ c sao cho a + b = c.
Lời giải:
Để tìm vectơ c, ta thực hiện phép cộng vectơ a và b theo quy tắc hình bình hành hoặc quy tắc tam giác. Kết quả của phép cộng này chính là vectơ c.
Đề bài: Cho vectơ a = (x1, y1) và b = (x2, y2). Tìm tọa độ của vectơ a - b.
Lời giải:
Tọa độ của vectơ a - b được tính bằng hiệu các tọa độ tương ứng của hai vectơ a và b. Cụ thể:
a - b = (x1 - x2, y1 - y2)
Ngoài các bài tập trực tiếp về phép toán vectơ, bài 7 còn có thể xuất hiện các dạng bài tập sau:
Để củng cố kiến thức về vectơ, các em có thể tham khảo thêm các bài tập tương tự sau:
Bài 7 trang 54 SGK Toán 10 tập 2 – Cánh diều là một bài tập quan trọng giúp các em hiểu sâu hơn về vectơ và ứng dụng của nó trong hình học. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em sẽ tự tin hơn trong quá trình học tập.