Chào mừng các em học sinh đến với lời giải chi tiết bài 7 trang 11 SGK Toán 10 tập 1 – Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu, nhanh chóng và chính xác.
Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em giải quyết mọi khó khăn trong môn Toán.
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:
Đề bài
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:
a) \(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)
b) \(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)
c) \(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)
d) \(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)
Phương pháp giải - Xem chi tiết
+) Phủ định của mệnh đề “\(\forall x \in X,\;P(x)\)” là mệnh đề “\(\exists x \in X,\;\overline {P(x)} \)”
+) Phủ định của mệnh đề “\(\exists x \in X,\;P(x)\)” là mệnh đề “\(\forall x \in X,\;\overline {P(x)} \)”.
Lời giải chi tiết
a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).
b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} > 2.2 - 1\) hay \(4 > 3\) (luôn đúng).
c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).
d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.
Bài 7 trang 11 SGK Toán 10 tập 1 – Cánh diều thuộc chương 1: Mệnh đề và tập hợp. Bài tập này yêu cầu học sinh vận dụng kiến thức về các phép toán trên tập hợp, bao gồm hợp, giao, hiệu và phần bù của tập hợp để giải quyết các bài toán cụ thể.
Bài 7 SGK Toán 10 tập 1 – Cánh diều thường bao gồm các câu hỏi yêu cầu:
Để giải quyết hiệu quả các bài tập về tập hợp, học sinh cần nắm vững các kiến thức sau:
(Giả sử bài 7 có nội dung cụ thể như sau: Cho A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6, 7}. Tìm A ∪ B, A ∩ B, A \ B, B \ A.)
Lời giải:
Để củng cố kiến thức về tập hợp, các em có thể tự giải các bài tập sau:
Khi giải bài tập về tập hợp, các em cần chú ý:
Hy vọng với lời giải chi tiết và phương pháp giải bài tập về tập hợp được trình bày trên đây, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài tập tương tự. Chúc các em học tập tốt!