Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều

Giải bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều

Giải bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2 ; 0), N4 ; 2), P(1 ; 3). a) Tìm toạ độ các điểm A, B, C. b) Trọng tâm hai tam giác ABC và MNP có trùng nhau không? Vì sao?

Đề bài

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có trung điểm các cạnh BC, CA, AB tương ứng là M(2 ; 0), N4 ; 2), P(1 ; 3).

a) Tìm toạ độ các điểm A, B, C.

b) Trọng tâm hai tam giác ABC và MNP có trùng nhau không? Vì sao?

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều 1

a) Trung điểm M của đoạn thẳng AB có tọa độ là: \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\) 

b) Tìm trọng tâm của hai tam giác bằng công thức tính trọng tâm: G là trọng tâm tam giác ABC thì tọa độ G là: \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

Lời giải chi tiết

a) Do M, N, P là trung điểm của các cạnh BC, CA, AB nên:

\(\left\{ \begin{array}{l}\frac{{{x_B} + {x_C}}}{2} = {x_M}\\\frac{{{x_B} + {x_A}}}{2} = {x_P}\\\frac{{{x_A} + {x_C}}}{2} = {x_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 4\\{x_B} + {x_A} = 2\\{x_A} + {x_C} = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 3\\{x_B} = - 1\\{x_C} = 5\end{array} \right.\) và \(\left\{ \begin{array}{l}\frac{{{y_B} + {y_C}}}{2} = {y_M}\\\frac{{{y_B} + {y_A}}}{2} = {y_P}\\\frac{{{y_A} + {y_C}}}{2} = {y_N}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_B} + {y_C} = 0\\{y_B} + {y_A} = 6\\{y_A} + {y_C} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y_A} = 5\\{y_B} = 1\\{y_C} = - 1\end{array} \right.\)

Vậy \(A\left( {3;5} \right),B\left( { - 1; 1} \right),C\left( {5; - 1} \right)\)

b) Trọng tâm tam giác ABC có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{3 + \left( { - 1} \right) + 5}}{3} = \frac{7}{3}\\\frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{5 + \left( { - 1} \right) + 1}}{3} = \frac{5}{3}\end{array} \right.\)

Trọng tâm tam giác MNP có tọa độ là: \(\left\{ \begin{array}{l}\frac{{{x_M} + {x_N} + {x_P}}}{3} = \frac{{2 + 4 + 1}}{3} = \frac{7}{3}\\\frac{{{y_M} + {y_N} + {y_P}}}{3} = \frac{{0 + 2 + 3}}{3} = \frac{5}{3}\end{array} \right.\)

Vậy trọng tâm của 2 tam giác ABC và MNP là trùng nhau vì có cùng tọa độ.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều: Tổng quan

Bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ trong hình.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số).
  • Dạng 3: Chứng minh đẳng thức vectơ.
  • Dạng 4: Giải các bài toán liên quan đến vectơ trong hình học phẳng.

Lời giải chi tiết bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều. (Ở đây sẽ là nội dung giải chi tiết từng câu hỏi của bài 3, ví dụ:)

Câu a)

(Giải thích chi tiết cách giải câu a, bao gồm các bước thực hiện, công thức sử dụng và kết luận.)

Câu b)

(Giải thích chi tiết cách giải câu b, bao gồm các bước thực hiện, công thức sử dụng và kết luận.)

Các kiến thức liên quan cần nắm vững

Để giải quyết bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  • Khái niệm vectơ: Vectơ là một đoạn thẳng có hướng.
  • Phép cộng, phép trừ vectơ: Quy tắc hình bình hành, quy tắc tam giác.
  • Tích của một số với vectơ: Vectơ cùng phương, ngược phương.
  • Các tính chất của phép cộng, phép trừ vectơ: Tính giao hoán, tính kết hợp, phần tử trung hòa.

Mẹo giải bài tập vectơ

Dưới đây là một số mẹo giúp bạn giải bài tập vectơ một cách dễ dàng hơn:

  1. Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  2. Sử dụng quy tắc hình bình hành: Quy tắc hình bình hành là công cụ hữu ích để cộng và trừ vectơ.
  3. Biến đổi vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ để biến đổi biểu thức vectơ về dạng đơn giản hơn.
  4. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức về vectơ, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài 1 trang 70 SGK Toán 10 tập 2 – Cánh diều
  • Bài 2 trang 71 SGK Toán 10 tập 2 – Cánh diều
  • Bài 4 trang 73 SGK Toán 10 tập 2 – Cánh diều

Kết luận

Hy vọng rằng, với lời giải chi tiết và những kiến thức, mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin giải quyết bài 3 trang 72 SGK Toán 10 tập 2 – Cánh diều và các bài tập tương tự một cách hiệu quả. Chúc bạn học tập tốt!

Khái niệmGiải thích
VectơMột đoạn thẳng có hướng, được xác định bởi điểm đầu và điểm cuối.
Phép cộng vectơTìm vectơ tổng của hai vectơ bằng cách sử dụng quy tắc hình bình hành hoặc quy tắc tam giác.

Tài liệu, đề thi và đáp án Toán 10