Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 4 trang 19 SGK Toán 10 tập 2 – Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.
Tính
Đề bài
Cho \({\left( {1 - \frac{1}{2}x} \right)^5} = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + {a_4}{x^4} + {a_5}{x^5}\) . Tính:
a) \({a_3}\)
b) \({a_0} + {a_1} + {a_2} + {a_3} + {a_4} + {a_5}\)
Phương pháp giải - Xem chi tiết
a) Bước 1: Sử dụng khai triển Nhị thức Newton với \(n = 5\):
\({\left( {a + b} \right)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)
Bước 2: Đồng nhất hệ số \( \Rightarrow {a_3}\) là hệ số của \({x_3}\)
b) Nhận xét: Thay \(x = 1\) vào khai triển ban đầu ta có ngay tổng cần tính
Lời giải chi tiết
a) +) Ta có: \({\left( {1 - \frac{1}{2}x} \right)^5} = 1 - \frac{5}{2}x + \frac{5}{2}{x^2} - \frac{5}{4}{x^3} + \frac{5}{{16}}{x^4} - \frac{1}{{32}}{x^5}\)
+) Đồng nhất hệ số với khai triển ở đề bài ta thấy: \({a_3} = \frac{{ - 5}}{4}\)
b) +) Thay \(x = 1\) vào biểu thức khai triển ở đề bài, ta có: \({\left( {1 - \frac{1}{2}.1} \right)^5} = {a_0} + {a_1} + {a_2} + {a_3} + {a_4} + {a_5}\)
+) Vậy tổng :\({a_0} + {a_1} + {a_2} + {a_3} + {a_4} + {a_5} = {\left( {\frac{1}{2}} \right)^5} = \frac{1}{{32}}\)
Bài 4 trang 19 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.
Bài 4 trang 19 SGK Toán 10 tập 2 – Cánh diều thường bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 4 trang 19 SGK Toán 10 tập 2 – Cánh diều. (Ở đây sẽ là nội dung giải chi tiết từng phần của bài tập, bao gồm các bước giải, giải thích và kết luận. Nội dung này sẽ được trình bày chi tiết và đầy đủ, đảm bảo tính chính xác và dễ hiểu.)
Để làm rõ hơn phương pháp giải, chúng ta cùng xem xét một ví dụ minh họa:
Ví dụ: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Lời giải:
Để giải các bài tập về vectơ một cách hiệu quả, bạn nên lưu ý những mẹo sau:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 4 trang 19 SGK Toán 10 tập 2 – Cánh diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!