Logo Header
  1. Môn Toán
  2. Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều

Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều

Lý thuyết Tích vô hướng của hai vecto - Nền tảng Toán 10 Cánh diều

Chào mừng bạn đến với bài học về Lý thuyết Tích vô hướng của hai vecto, một phần quan trọng trong chương trình Toán 10 Cánh diều. Bài học này sẽ cung cấp cho bạn kiến thức cơ bản và nâng cao về tích vô hướng, giúp bạn giải quyết các bài toán liên quan một cách hiệu quả.

Chúng ta sẽ cùng nhau khám phá định nghĩa, tính chất, ứng dụng của tích vô hướng, cũng như các ví dụ minh họa cụ thể. Hãy sẵn sàng để cùng giaitoan.edu.vn chinh phục kiến thức Toán 10!

I. ĐỊNH NGHĨA II. TÍCH CHẤT III. MỘT SỐ ỨNG DỤNG

A. Lý thuyết

1. Định nghĩa

a) Tích vô hướng của hai vecto có cùng điểm đầu

Góc giữa hai vecto \(\overrightarrow {OA} ,\overrightarrow {OB} \) là góc giữa hai tia OA, OB và được kí hiệu là \(\left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right)\).

Tích vô hướng của hai vecto \(\overrightarrow {OA} ,\overrightarrow {OB} \) là một số thực, kí hiệu \(\overrightarrow {OA} .\overrightarrow {OB} \), được xác định bởi công thức: \(\overrightarrow {OA} .\overrightarrow {OB} = \left| {\overrightarrow {OA} } \right|.\left| {\overrightarrow {OB} } \right|\cos \left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right)\).

Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều 1

b) Tích vô hướng của hai vecto tùy ý

Cho hai vecto \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \), kí hiệu là \(\left( {\overrightarrow a ,\overrightarrow b } \right)\). Lấy một điểm O và vẽ vecto \(\overrightarrow {OA} = \overrightarrow a \), \(\overrightarrow {OB} = \overrightarrow b \).

Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều 2

Góc giữa hai vecto \(\overrightarrow a ,\overrightarrow b \), kí hiệu là \(\left( {\overrightarrow a ,\overrightarrow b } \right)\), là góc giữa hai vecto \(\overrightarrow {OA} ,\overrightarrow {OB} \).

Tích vô hướng của hai vecto \(\overrightarrow a ,\overrightarrow b \), kí hiệu \(\overrightarrow a .\overrightarrow b \), là tích vô hướng của hai vecto \(\overrightarrow {OA} ,\overrightarrow {OB} \). Như vậy, tích vô hướng của hai vecto \(\overrightarrow a ,\overrightarrow b \) là một số thực được xác định bởi công thức: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).

Quy ước: Tích vô hướng của một vecto bất kì vói vecto \(\overrightarrow 0 \) là số 0.

Chú ý:

+) \(\left( {\overrightarrow a ,\overrightarrow b } \right) = \left( {\overrightarrow b ,\overrightarrow a } \right)\).

+) Nếu \(\left( {\overrightarrow a ,\overrightarrow b } \right) = {90^o}\) thì ta nói hai vecto \(\overrightarrow a ,\overrightarrow b \) vuông góc với nhau, kí hiệu \(\vec a \bot \vec b\) hoặc \(\overrightarrow a \bot \overrightarrow b \). Khi đó \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos {90^o} = 0\).

+) Tích vô hướng của hai vectơ cùng hướng bằng tích hai độ dài của chúng.

+) Tích vô hướng của hai vectơ ngược hướng bằng số đối của tích hai độ dài của chúng.

2. Tính chất

Với hai vecto bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực k tùy ý, ta có:

+) \(\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow a \) (tính chất giao hoán).

+) \(\overrightarrow a .\left( {\overrightarrow b + \overrightarrow c } \right) = \overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c \) (tính chất phân phối).

+) \(\left( {k\overrightarrow a } \right).\overrightarrow b = k\left( {\overrightarrow a .\overrightarrow b } \right) = \overrightarrow a .\left( {k\overrightarrow b } \right)\).

+) \({\overrightarrow a ^2} \ge 0\), \({\overrightarrow a ^2} = 0 \Leftrightarrow \overrightarrow a = \overrightarrow 0 \).

Trong đó, kí hiệu \(\overrightarrow a .\overrightarrow a = {\overrightarrow a ^2}\) và biểu thức này được gọi là bình phương vô hướng của vecto \(\overrightarrow a \).

3. Một số ứng dụng

a) Tính độ dài của đoạn thẳng

Nhận xét: Với hai điểm A, B phân biệt, ta có \({\overrightarrow {AB} ^2} = {\left| {\overrightarrow {AB} } \right|^2}\). Do đó, độ dài đoạn thẳng AB được tính như sau: \(AB = \sqrt {{{\overrightarrow {AB} }^2}} \).

b) Chứng minh hai đường thẳng vuông góc

Nhận xét: Cho hai vecto bất kì \(\overrightarrow a ,\overrightarrow b \) khác \(\overrightarrow 0 \). Ta có: \(\overrightarrow a .\overrightarrow b = 0 \Leftrightarrow \overrightarrow a \bot \overrightarrow b \).

B. Bài tập

Bài 1: Cho tam giác ABC vuông cân tại A và AB = 4 cm.

a) Tính độ dài cạnh huyền BC.

b) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \); \(\overrightarrow {BA} .\overrightarrow {BC} \).

Giải:

a) \(BC = AB\sqrt 2 = 4\sqrt 2 \) (cm).

b) \(\overrightarrow {AB} .\overrightarrow {AC} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)

\( = 4.4.\cos \widehat {BAC} = 16.\cos {90^o} = 16.0 = 0\).

\(\overrightarrow {BA} .\overrightarrow {BC} = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|.\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right)\)

\( = 4.4\sqrt 2 .\cos \widehat {ABC} = 16\sqrt 2 .\cos {45^o} = 16\sqrt 2 .\frac{{\sqrt 2 }}{2} = 16\).

Bài 2: Cho hình vuông ABCD tâm O có độ dài cạnh bằng a. Tính:

a) \(\overrightarrow {AB} .\overrightarrow {OC} \).

b) \(\overrightarrow {AB} .\overrightarrow {BD} \).

c) \(\overrightarrow {AB} .\overrightarrow {OD} \).

Giải:

Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều 3

a) Ta có: \(\left( {\overrightarrow {AB} ,\overrightarrow {OC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AO} } \right) = \widehat {BAO} = {45^o}\).

Vậy \(\overrightarrow {AB} .\overrightarrow {OC} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {OC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {OC} } \right) = a.\frac{a}{{\sqrt 2 }}.\cos {45^o} = \frac{{{a^2}}}{{\sqrt 2 }}.\frac{{\sqrt 2 }}{2} = \frac{{{a^2}}}{2}\).

b) Vẽ vecto \(\overrightarrow {BE} = \overrightarrow {AB} \). Ta có:

\(\left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = \left( {\overrightarrow {BE} ,\overrightarrow {BD} } \right) = \widehat {EBD} = {135^o}\).

Vậy \(\overrightarrow {AB} .\overrightarrow {BD} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {BD} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = a.a\sqrt 2 .\cos {135^o} = {a^2}\sqrt 2 .\frac{{ - \sqrt 2 }}{2} = - {a^2}\).

c) Vì \(\overrightarrow {BE} = \overrightarrow {AB} \), \(\overrightarrow {BO} = \overrightarrow {OD} \) nên \(\left( {\overrightarrow {AB} ,\overrightarrow {OD} } \right) = \left( {\overrightarrow {BE} ,\overrightarrow {BO} } \right) = \widehat {EBO} = {135^o}\).

Vậy \(\overrightarrow {AB} .\overrightarrow {OD} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {OD} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {OD} } \right) = a.\frac{a}{{\sqrt 2 }}.\cos {135^o} = \frac{{{a^2}}}{{\sqrt 2 }}.\frac{{ - \sqrt 2 }}{2} = \frac{{ - {a^2}}}{2}\).

Bài 3: Cho đoạn thẳng AB và I là trung điểm của AB. Chứng minh rằng với mỗi điểm O, ta có:

a) \(\overrightarrow {OI} .\overrightarrow {IA} + \overrightarrow {OI} .\overrightarrow {IB} = 0\).

b) \(\overrightarrow {OI} .\overrightarrow {AB} = \frac{1}{2}\left( {{{\overrightarrow {OB} }^2} - {{\overrightarrow {OA} }^2}} \right)\).

Giải:

Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều 4

a) Vì I là trung điểm của AB nên \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \).

Vậy \(\overrightarrow {OI} .\overrightarrow {IA} + \overrightarrow {OI} .\overrightarrow {IB} = \overrightarrow {OI} .\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) = \overrightarrow {OI} .\overrightarrow 0 = 0\).

b) Vì I là trung điểm AB nên \(2\overrightarrow {OI} = \overrightarrow {OB} + \overrightarrow {OA} \Leftrightarrow \overrightarrow {OI} = \frac{1}{2}\left( {\overrightarrow {OB} + \overrightarrow {OA} } \right)\).

Vậy \(\overrightarrow {OI} .\overrightarrow {AB} = \frac{1}{2}\left( {\overrightarrow {OB} + \overrightarrow {OA} } \right).\left( {\overrightarrow {OB} - \overrightarrow {OA} } \right) = \frac{1}{2}.\left( {{{\overrightarrow {OB} }^2} - {{\overrightarrow {OA} }^2}} \right)\).

Bài 4: Cho tam giác ABC vuông tại A. Tính \(\overrightarrow {AB} .\overrightarrow {AB} + \overrightarrow {AB} .\overrightarrow {BC} \).

Giải:

\(\overrightarrow {AB} .\overrightarrow {AB} + \overrightarrow {AB} .\overrightarrow {BC} = \overrightarrow {AB} .\left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) = \overrightarrow {AB} .\overrightarrow {AC} = 0\) (do \(\overrightarrow {AB} \) vuông góc với \(\overrightarrow {AC} \)).

Bài 5: Chứng minh rằng trong tam giác ABC, ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\) (định lí cosin trong tam giác).

Giải:

Ta có \({\overrightarrow {BC} ^2} = {\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)^2} = {\overrightarrow {AC} ^2} + {\overrightarrow {AB} ^2} - 2.\overrightarrow {AC} .\overrightarrow {AB} \).

Suy ra \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)

\( = A{B^2} + A{C^2} - 2AB.AC.\cos A\).

Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều 5

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều

Tích vô hướng của hai vecto là một khái niệm quan trọng trong hình học giải tích lớp 10, đặc biệt trong chương trình Toán 10 Cánh diều. Nó cho phép chúng ta tính toán góc giữa hai vecto và xác định mối quan hệ vuông góc giữa chúng.

1. Định nghĩa Tích vô hướng

Cho hai vecto a = (a1; a2) và b = (b1; b2). Tích vô hướng của ab, ký hiệu là a.b, được định nghĩa là:

a.b = a1b1 + a2b2

2. Tính chất của Tích vô hướng

  • a.b = b.a (Tính giao hoán)
  • a.(b + c) = a.b + a.c (Tính phân phối đối với phép cộng)
  • (ka).b = k(a.b) (Tính chất đối với phép nhân với một số)
  • a.a = ||a||2 (Liên hệ giữa tích vô hướng và độ dài vecto)

3. Biểu thức tính góc giữa hai vecto

Nếu ab là hai vecto khác 0, thì góc θ giữa hai vecto được tính bởi công thức:

cos θ = a.b / (||a|| . ||b||)

4. Ứng dụng của Tích vô hướng

  • Xác định góc giữa hai đường thẳng: Sử dụng tích vô hướng để tính góc giữa hai vecto chỉ phương của hai đường thẳng.
  • Kiểm tra tính vuông góc: Hai vecto ab vuông góc khi và chỉ khi a.b = 0.
  • Tính diện tích hình bình hành: Diện tích hình bình hành tạo bởi hai vecto ab là ||a x b||, trong đó a x b là tích có hướng của ab.

5. Bài tập minh họa

Bài 1: Cho a = (2; -1) và b = (1; 3). Tính a.b.

Giải:a.b = 2*1 + (-1)*3 = 2 - 3 = -1

Bài 2: Cho a = (1; 0) và b = (0; 1). Tính góc θ giữa hai vecto.

Giải: cos θ = (a.b) / (||a|| . ||b||) = (1*0 + 0*1) / (√(12 + 02) . √(02 + 12)) = 0 / (1*1) = 0. Suy ra θ = 90o.

6. Kết luận

Lý thuyết tích vô hướng của hai vecto là một công cụ mạnh mẽ trong hình học giải tích, giúp chúng ta giải quyết nhiều bài toán liên quan đến góc, khoảng cách và mối quan hệ giữa các vecto. Việc nắm vững kiến thức này là rất quan trọng để học tốt môn Toán 10 và các môn học liên quan sau này.

Tài liệu, đề thi và đáp án Toán 10