Logo Header
  1. Môn Toán
  2. Giải bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều

Giải bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều

Giải bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Tìm tọa độ các giao điểm của (E) với trục Ox, Oy và tọa độ các tiêu điểm của (E).

Đề bài

Cho elip \(\left( E \right)\) có phương trình chính tắc \(\frac{{{x^2}}}{{49}} + \frac{{{y^2}}}{{25}} = 1\) .Tìm tọa độ các giao điểm của \(\left( E \right)\) với trục Ox, Oy và tọa độ các tiêu điểm của \(\left( E \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều 1

Elip (E) giao với 2 trục tọa độ Ox, Oy tại bốn điểm \({A_1}\left( { - a;{\rm{ }}0} \right)\)\({A_2}\left( {a{\rm{ }};{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ }}b} \right)\)\({B_2}\left( {0;{\rm{ }}b} \right)\)

Elip (E) có 2 tiêu điểm là \({F_1}\left( { - c;0} \right)\) và \({F_2}\left( {c;0} \right)\) trong đó \({a^2} = {c^2} + {b^2}\)

Lời giải chi tiết

Từ phương trình chính tắc của (E) ta có: \(a = 7,b = 5 \Rightarrow c = 2\sqrt 6 {\rm{ }}(do{\rm{ }}{{\rm{c}}^2} + {b^2} = {a^2})\)

Vậy ta có tọa độ các giao điểm của (E) với trục Ox, Oy là: \({A_1}\left( { - 7;{\rm{ }}0} \right)\)\({A_2}\left( {7;{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ 5}}} \right)\)\({B_2}\left( {0;{\rm{ 5}}} \right)\)

Hai tiêu điểm của (E) có tọa độ là: \({F_1}\left( { - 2\sqrt 6 ;0} \right),{F_2}\left( {2\sqrt 6 ;0} \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều: Tổng quan

Bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong mặt phẳng để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều thường bao gồm các dạng bài tập sau:

  • Tìm tọa độ của vectơ: Cho các điểm A, B, C, yêu cầu tìm tọa độ của vectơ AB, AC, BC.
  • Thực hiện các phép toán vectơ: Tính tổng, hiệu của hai vectơ, tính tích của một số với vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của phép cộng, phép trừ vectơ, tích của một số với vectơ để chứng minh đẳng thức vectơ.
  • Ứng dụng vectơ vào hình học: Sử dụng vectơ để chứng minh các tính chất của hình học như tính chất của hình bình hành, hình chữ nhật, hình thoi, hình vuông.

Lời giải chi tiết bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài tập. Lưu ý rằng, lời giải này chỉ mang tính chất tham khảo, bạn nên tự mình suy nghĩ và giải bài tập trước khi xem lời giải để rèn luyện kỹ năng giải toán.

Ví dụ 1: Tìm tọa độ của vectơ

Cho A(1; 2) và B(3; 4). Tìm tọa độ của vectơ AB.

Lời giải:

Tọa độ của vectơ AB được tính theo công thức: AB = (xB - xA; yB - yA). Thay các giá trị của A và B vào công thức, ta được: AB = (3 - 1; 4 - 2) = (2; 2).

Ví dụ 2: Thực hiện các phép toán vectơ

Cho vectơ a = (1; 2) và vectơ b = (3; 4). Tính a + b và 2a.

Lời giải:

a + b = (1 + 3; 2 + 4) = (4; 6).

2a = (2 * 1; 2 * 2) = (2; 4).

Ví dụ 3: Chứng minh đẳng thức vectơ

Cho A, B, C là ba điểm bất kỳ. Chứng minh rằng: AB + BC = AC.

Lời giải:

Theo quy tắc cộng vectơ, ta có: AB + BC = AC. Vậy đẳng thức được chứng minh.

Mẹo giải bài tập vectơ

  • Nắm vững các định nghĩa và tính chất của vectơ: Đây là nền tảng để giải quyết mọi bài tập về vectơ.
  • Sử dụng quy tắc cộng, trừ vectơ một cách linh hoạt: Quy tắc này giúp bạn đơn giản hóa các bài toán phức tạp.
  • Vẽ hình minh họa: Việc vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và tìm ra hướng giải quyết.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải toán, bạn có thể tham khảo các bài tập tương tự sau:

  1. Tìm tọa độ của vectơ CD, biết C(5; 6) và D(7; 8).
  2. Cho vectơ m = (2; -1) và vectơ n = (-3; 4). Tính m - n và 3n.
  3. Chứng minh rằng: AB - AC = CB.

Kết luận

Bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều là một bài tập quan trọng giúp bạn hiểu rõ hơn về vectơ và các phép toán vectơ. Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập mà chúng tôi đã cung cấp, bạn sẽ tự tin hơn trong quá trình học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 10