Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều

Giải bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều

Giải bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin hơn trong việc chinh phục môn Toán.

Lập phương trình đường tròn trong mỗi trường hợp sau: a) Đường tròn có tâm I(- 3 ; 4) bán kính R = 9; b) Đường tròn có tâm I(5 ;-2) và đi qua điểm M(4;- 1); c) Đường tròn có tâm I(1;- 1) và có một tiếp tuyến là A: 5x- 12y – 1 = 0; d) Đường tròn đường kính AB với A(3;-4) và B(-1; 6); e) Đường tròn đi qua ba điểm A(1;1), B(3; 1), C(0; 4).

Đề bài

Lập phương trình đường tròn trong mỗi trường hợp sau:

a) Đường tròn có tâm I(- 3 ; 4) bán kính R = 9;

b) Đường tròn có tâm I(5 ;-2) và đi qua điểm M(4;- 1);

c) Đường tròn có tâm I(1;- 1) và có một tiếp tuyến là A: 5x- 12y – 1 = 0;

d) Đường tròn đường kính AB với A(3;-4) và B(-1; 6);

e) Đường tròn đi qua ba điểm A(1;1), B(3; 1), C(0; 4).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều 1

Đường tròn có tâm \(I\left( {a;b} \right)\) và bán kính R có phương trình là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)

Lời giải chi tiết

a) Phương trình đường tròn là: \({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 81\)

b) Bán kính đường tròn là: \(R = IM = \sqrt {{{\left( {4 - 5} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}} = \sqrt 2 \)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 2\)

c) Bán kính đường tròn là: \(R = \frac{{\left| {5.1 - 12.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{16}}{{13}}\)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {\frac{{16}}{{13}}} \right)^2}\)

d) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( {1;1} \right)\)

Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}} = \sqrt {29} \)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 29\)

e) Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\) b

Vậy \(I\left( {2;3} \right)\) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt 5 \)

Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều: Tổng quan

Bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học về vectơ trong mặt phẳng. Bài tập này yêu cầu học sinh vận dụng kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ và các ứng dụng thực tế.

Nội dung bài tập

Bài 3 bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:

  • Tính tích vô hướng của hai vectơ cho trước.
  • Xác định góc giữa hai vectơ dựa vào tích vô hướng.
  • Chứng minh một số đẳng thức vectơ.
  • Giải các bài toán hình học sử dụng tích vô hướng.

Phương pháp giải

Để giải bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Định nghĩa tích vô hướng của hai vectơ:a.b = |a||b|cos(θ), trong đó θ là góc giữa hai vectơ a và b.
  2. Công thức tính tích vô hướng: Nếu a = (x1, y1) và b = (x2, y2) thì a.b = x1x2 + y1y2.
  3. Mối quan hệ giữa tích vô hướng và góc giữa hai vectơ:
    • Nếu a.b > 0 thì góc giữa hai vectơ nhọn.
    • Nếu a.b < 0 thì góc giữa hai vectơ tù.
    • Nếu a.b = 0 thì hai vectơ vuông góc.
  4. Ứng dụng của tích vô hướng: Tính độ dài vectơ, xác định góc, chứng minh tính vuông góc, giải bài toán hình học.

Lời giải chi tiết bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều

(Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 3. Ví dụ:)

Câu a: Cho hai vectơ a = (1, 2)b = (-3, 4). Tính a.b.

Giải:a.b = (1)(-3) + (2)(4) = -3 + 8 = 5

Câu b: ...

Bài tập tương tự

Để củng cố kiến thức về tích vô hướng, bạn có thể làm thêm các bài tập sau:

  • Bài 1 trang 90 SGK Toán 10 tập 2 – Cánh diều
  • Bài 2 trang 91 SGK Toán 10 tập 2 – Cánh diều
  • Các bài tập trắc nghiệm về tích vô hướng

Lưu ý khi giải bài tập về tích vô hướng

  • Luôn kiểm tra kỹ các dữ kiện đề bài cung cấp.
  • Sử dụng đúng công thức tính tích vô hướng.
  • Phân tích mối quan hệ giữa tích vô hướng và góc giữa hai vectơ.
  • Vận dụng linh hoạt các kiến thức đã học để giải quyết các bài toán khác nhau.

Kết luận

Hy vọng với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 3 trang 91 SGK Toán 10 tập 2 – Cánh diều. Hãy luyện tập thường xuyên để nắm vững kiến thức và đạt kết quả tốt nhất trong môn Toán.

Công thứcMô tả
a.b = |a||b|cos(θ)Tích vô hướng của hai vectơ a và b
a.b = x1x2 + y1y2Tích vô hướng của hai vectơ a = (x1, y1) và b = (x2, y2)

Tài liệu, đề thi và đáp án Toán 10