Logo Header
  1. Môn Toán
  2. Giải bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều

Giải bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều

Giải bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu rõ kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em chinh phục môn Toán một cách dễ dàng.

Cho đồ thị hàm số bậc hai ở Hình 15.

Đề bài

Cho đồ thị hàm số bậc hai ở Hình 15.

Giải bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều 1

a) Xác định trục đối xứng, tọa độ đỉnh của đồ thị hàm số.

b) Xác định khoảng đồng biến, khoảng nghịch biến của hàm số.

c) Tìm công thức xác định hàm số.

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều 2

a) Tìm trục đối xứng trên đồ thị, đỉnh I trên đồ thị.

b) Đồ thị đi lên thì hàm số đồng biến, đi xuống thì hàm số nghịch biến.

c) Gọi hàm số là \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)

Đồ thị hàm số có đỉnh là \(I\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\), xác định thêm 1 điểm thuộc đồ thị và thay vào phương trình tìm a, b, c.

Lời giải chi tiết

a) Trục đối xứng là đường thẳng \(x = 2\)

Đỉnh là \(I\left( {2; - 1} \right)\)

b) Từ đồ thị ta thấy trên khoảng \(\left( { - \infty ;2} \right)\) thì hàm số đi xuống nên hàm số nghịch biến trên \(\left( { - \infty ;2} \right)\).

Trên khoảng \(\left( {2; + \infty } \right)\) thì hàm số đi xuống nên đồng biến trên \(\left( {2; + \infty } \right)\).

c) ) Gọi hàm số là \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)

Đồ thị hàm số có đỉnh là \(I\left( {2; - 1} \right)\) nên ta có:

\(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a{.2^2} + b.2 + c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\4a + 2b + c = - 1\end{array} \right.\)

Ta lại có điểm \(\left( {1;0} \right)\) thuộc đồ thị nên ta có: \(a + b + c = 0\)

Vậy ta có hệ sau:

\(\left\{ \begin{array}{l}b = - 4a\\4a + 2b + c = - 1\\a + b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\4a + 2.\left( { - 4a} \right) + c = - 1\\a + \left( { - 4a} \right) + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\c - 4a = - 1\\c - 3a = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\a = 1\\c = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4\\a = 1\\c = 3\end{array} \right.\)

Vậy parabol là \(y = {x^2} - 4x + 3\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều đặc sắc thuộc chuyên mục giải bài tập toán 10 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều: Tổng quan

Bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này yêu cầu học sinh phải nắm vững định nghĩa, ký hiệu, và các quy tắc liên quan đến tập hợp.

Nội dung bài tập

Bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều thường bao gồm các dạng bài tập sau:

  • Xác định các phần tử của tập hợp: Học sinh cần xác định các phần tử thuộc một tập hợp cho trước dựa trên một điều kiện hoặc tiêu chí nhất định.
  • Thực hiện các phép toán trên tập hợp: Bao gồm các phép hợp, giao, hiệu, và phần bù của các tập hợp.
  • Chứng minh các đẳng thức tập hợp: Sử dụng các tính chất của tập hợp để chứng minh các đẳng thức cho trước.
  • Giải các bài toán ứng dụng: Vận dụng kiến thức về tập hợp để giải quyết các bài toán thực tế.

Lời giải chi tiết bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều

Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích chi tiết từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 4, trang 43, SGK Toán 10 tập 1 – Cánh diều. Ví dụ:)

Ví dụ: Bài 4a)

Cho hai tập hợp A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∪ B.

Lời giải:

A ∪ B = {1, 2, 3, 4, 5, 6}.

Ví dụ: Bài 4b)

Cho hai tập hợp A = {1, 2, 3} và B = {2, 4, 6}. Tìm A ∩ B.

Lời giải:

A ∩ B = {2}.

Các lưu ý khi giải bài tập về tập hợp

Để giải quyết các bài tập về tập hợp một cách hiệu quả, các em cần lưu ý những điều sau:

  • Nắm vững định nghĩa và ký hiệu: Hiểu rõ các khái niệm cơ bản như tập hợp, phần tử, tập con, tập rỗng, và các ký hiệu liên quan.
  • Sử dụng các tính chất của tập hợp: Áp dụng các tính chất như tính giao hoán, tính kết hợp, tính phân phối để đơn giản hóa các biểu thức tập hợp.
  • Vẽ sơ đồ Ven: Sử dụng sơ đồ Ven để minh họa các tập hợp và các phép toán trên tập hợp, giúp dễ dàng hình dung và giải quyết bài toán.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về tập hợp, các em có thể tham khảo các bài tập tương tự sau:

  1. Cho hai tập hợp A = {a, b, c} và B = {b, d, e}. Tìm A ∪ B, A ∩ B, A \ B, B \ A.
  2. Chứng minh rằng A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
  3. Cho tập hợp A = {1, 2, 3, 4, 5}. Tìm số lượng tập con của A.

Kết luận

Bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều là một bài tập quan trọng giúp các em nắm vững kiến thức cơ bản về tập hợp. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, các em sẽ tự tin hơn trong quá trình học tập và giải quyết các bài tập tương tự. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 10