Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu rõ kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em chinh phục môn Toán một cách dễ dàng.
Cho đồ thị hàm số bậc hai ở Hình 15.
Đề bài
Cho đồ thị hàm số bậc hai ở Hình 15.
a) Xác định trục đối xứng, tọa độ đỉnh của đồ thị hàm số.
b) Xác định khoảng đồng biến, khoảng nghịch biến của hàm số.
c) Tìm công thức xác định hàm số.
Phương pháp giải - Xem chi tiết
a) Tìm trục đối xứng trên đồ thị, đỉnh I trên đồ thị.
b) Đồ thị đi lên thì hàm số đồng biến, đi xuống thì hàm số nghịch biến.
c) Gọi hàm số là \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)
Đồ thị hàm số có đỉnh là \(I\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\), xác định thêm 1 điểm thuộc đồ thị và thay vào phương trình tìm a, b, c.
Lời giải chi tiết
a) Trục đối xứng là đường thẳng \(x = 2\)
Đỉnh là \(I\left( {2; - 1} \right)\)
b) Từ đồ thị ta thấy trên khoảng \(\left( { - \infty ;2} \right)\) thì hàm số đi xuống nên hàm số nghịch biến trên \(\left( { - \infty ;2} \right)\).
Trên khoảng \(\left( {2; + \infty } \right)\) thì hàm số đi xuống nên đồng biến trên \(\left( {2; + \infty } \right)\).
c) ) Gọi hàm số là \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)
Đồ thị hàm số có đỉnh là \(I\left( {2; - 1} \right)\) nên ta có:
\(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a{.2^2} + b.2 + c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\4a + 2b + c = - 1\end{array} \right.\)
Ta lại có điểm \(\left( {1;0} \right)\) thuộc đồ thị nên ta có: \(a + b + c = 0\)
Vậy ta có hệ sau:
\(\left\{ \begin{array}{l}b = - 4a\\4a + 2b + c = - 1\\a + b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\4a + 2.\left( { - 4a} \right) + c = - 1\\a + \left( { - 4a} \right) + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\c - 4a = - 1\\c - 3a = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\a = 1\\c = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4\\a = 1\\c = 3\end{array} \right.\)
Vậy parabol là \(y = {x^2} - 4x + 3\)
Bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này yêu cầu học sinh phải nắm vững định nghĩa, ký hiệu, và các quy tắc liên quan đến tập hợp.
Bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích chi tiết từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 4, trang 43, SGK Toán 10 tập 1 – Cánh diều. Ví dụ:)
Cho hai tập hợp A = {1, 2, 3, 4} và B = {3, 4, 5, 6}. Tìm A ∪ B.
Lời giải:
A ∪ B = {1, 2, 3, 4, 5, 6}.
Cho hai tập hợp A = {1, 2, 3} và B = {2, 4, 6}. Tìm A ∩ B.
Lời giải:
A ∩ B = {2}.
Để giải quyết các bài tập về tập hợp một cách hiệu quả, các em cần lưu ý những điều sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về tập hợp, các em có thể tham khảo các bài tập tương tự sau:
Bài 4 trang 43 SGK Toán 10 tập 1 – Cánh diều là một bài tập quan trọng giúp các em nắm vững kiến thức cơ bản về tập hợp. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, các em sẽ tự tin hơn trong quá trình học tập và giải quyết các bài tập tương tự. Chúc các em học tốt!