Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều

Giải bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều

Giải bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.

Cho hàm số y=1/x. Chứng tỏ hàm số đã cho:

Đề bài

Cho hàm số \(y = \frac{1}{x}\). Chứng tỏ hàm số đã cho:

a) Nghịch biến trên khoảng \(\left( {0; + \infty } \right)\);

b) Nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều 1

a) Lấy \({x_1},{x_2} \in \left( {0; + \infty } \right)\) sao cho \({x_1} < {x_2}\). Chứng minh \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

b) Lấy \({x_1},{x_2} \in \left( { - \infty ;0} \right)\) sao cho \({x_1} < {x_2}\). Chứng minh \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Lời giải chi tiết

a) Tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).

Lấy \({x_1},{x_2} \in \left( {0; + \infty } \right)\) sao cho \({x_1} < {x_2}\).

Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)

\({x_1},{x_2} \in \left( {0; + \infty } \right) \Rightarrow {x_1}{x_2} > 0\)

\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\).

b) Lấy \({x_1},{x_2} \in \left( { - \infty ;0} \right)\) sao cho \({x_1} < {x_2}\).

Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)

\({x_1},{x_2} \in \left( { - \infty ;0} \right) \Rightarrow {x_1}{x_2} > 0\)(Cùng dấu âm nên tích cũng âm)

\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)

Vậy hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều đặc sắc thuộc chuyên mục giải toán 10 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều: Tổng quan

Bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về tập hợp, các phép toán trên tập hợp, và các tính chất cơ bản của tập hợp để giải quyết các bài toán cụ thể. Bài tập này thường yêu cầu học sinh xác định các tập hợp, tìm phần tử thuộc tập hợp, thực hiện các phép hợp, giao, hiệu, bù của các tập hợp, và chứng minh các đẳng thức liên quan đến tập hợp.

Nội dung chi tiết bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều

Bài 6 thường bao gồm một số câu hỏi nhỏ, mỗi câu hỏi yêu cầu học sinh thực hiện một thao tác cụ thể trên các tập hợp cho trước. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và định nghĩa cơ bản về tập hợp, bao gồm:

  • Tập hợp: Một tập hợp là một nhóm các đối tượng được xác định rõ ràng.
  • Phần tử của tập hợp: Một đối tượng thuộc tập hợp được gọi là phần tử của tập hợp đó.
  • Phép hợp (∪): Phép hợp của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc A hoặc B (hoặc cả hai).
  • Phép giao (∩): Phép giao của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc cả A và B.
  • Phép hiệu (\): Phép hiệu của hai tập hợp A và B là tập hợp chứa tất cả các phần tử thuộc A nhưng không thuộc B.
  • Phép bù (CA): Phép bù của tập hợp A trong tập hợp U (tập vũ trụ) là tập hợp chứa tất cả các phần tử thuộc U nhưng không thuộc A.

Hướng dẫn giải chi tiết bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều

Để giúp bạn hiểu rõ hơn về cách giải bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều, chúng tôi sẽ cung cấp hướng dẫn giải chi tiết cho từng câu hỏi nhỏ. Dưới đây là một ví dụ:

Ví dụ:

Cho hai tập hợp A = {1, 2, 3} và B = {2, 4, 5}. Hãy tìm:

  1. A ∪ B
  2. A ∩ B
  3. A \ B

Giải:

  • A ∪ B = {1, 2, 3, 4, 5}
  • A ∩ B = {2}
  • A \ B = {1, 3}

Các dạng bài tập thường gặp trong bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều

Ngoài các bài tập về phép toán trên tập hợp, bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều còn có thể xuất hiện các dạng bài tập sau:

  • Chứng minh đẳng thức tập hợp: Yêu cầu học sinh chứng minh một đẳng thức liên quan đến các phép toán trên tập hợp.
  • Giải bài toán ứng dụng: Yêu cầu học sinh vận dụng kiến thức về tập hợp để giải quyết các bài toán thực tế.
  • Xác định số phần tử của tập hợp: Yêu cầu học sinh tính số phần tử của một tập hợp dựa trên các thông tin cho trước.

Mẹo giải bài tập về tập hợp hiệu quả

Để giải bài tập về tập hợp một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Vẽ sơ đồ Venn: Sơ đồ Venn là một công cụ hữu ích để trực quan hóa các tập hợp và các phép toán trên tập hợp.
  • Sử dụng các công thức: Có nhiều công thức liên quan đến các phép toán trên tập hợp, bạn nên ghi nhớ và áp dụng chúng một cách linh hoạt.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, bạn nên kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập luyện tập thêm

Để củng cố kiến thức về tập hợp và các phép toán trên tập hợp, bạn có thể làm thêm các bài tập sau:

  • Bài 1 trang 39 SGK Toán 10 tập 1 – Cánh diều
  • Bài 2 trang 39 SGK Toán 10 tập 1 – Cánh diều
  • Bài 3 trang 39 SGK Toán 10 tập 1 – Cánh diều

Kết luận

Bài 6 trang 38 SGK Toán 10 tập 1 – Cánh diều là một bài tập quan trọng giúp học sinh nắm vững kiến thức cơ bản về tập hợp và các phép toán trên tập hợp. Hy vọng với hướng dẫn chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin chinh phục bài tập này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 10