Logo Header
  1. Môn Toán
  2. Giải bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều

Giải bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều

Giải bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều trên giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu rõ kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em chinh phục môn Toán một cách dễ dàng.

Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.

Đề bài

Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều 1

Phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\), trong đó tiêu điểm là \(F\left( {\frac{p}{2};0} \right)\) và phương trình đường chuẩn là: \(x + \frac{p}{2} = 0\).

Lời giải chi tiết

Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)

Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)

Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)

Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều đặc sắc thuộc chuyên mục toán lớp 10 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều: Tổng quan

Bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan. Việc giải bài tập này không chỉ giúp học sinh củng cố kiến thức lý thuyết mà còn rèn luyện kỹ năng giải quyết vấn đề thực tế.

Nội dung bài tập

Bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ trong hình.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, tích).
  • Dạng 3: Chứng minh đẳng thức vectơ.
  • Dạng 4: Ứng dụng vectơ vào giải quyết các bài toán hình học.

Lời giải chi tiết bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều

Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích từng phần của bài tập. (Nội dung lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng, và sử dụng hình vẽ minh họa nếu cần thiết.)

Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

Lời giải:

  1. Áp dụng quy tắc trung điểm, ta có: AM = (AB + AC) / 2.
  2. Nhân cả hai vế với 2, ta được: 2AM = AB + AC.
  3. Vậy, AB + AC = 2AM (đpcm).

Mở rộng kiến thức

Để nắm vững kiến thức về vectơ, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 10 tập 2 – Cánh diều.
  • Sách bài tập Toán 10 tập 2 – Cánh diều.
  • Các trang web học Toán online uy tín.

Bài tập tương tự

Để rèn luyện kỹ năng giải bài tập về vectơ, các em có thể thử sức với các bài tập tương tự sau:

  • Bài 12 trang 102 SGK Toán 10 tập 2 – Cánh diều.
  • Bài 13 trang 103 SGK Toán 10 tập 2 – Cánh diều.
  • Các bài tập trong sách bài tập Toán 10 tập 2 – Cánh diều.

Lưu ý khi giải bài tập về vectơ

Khi giải bài tập về vectơ, các em cần lưu ý những điều sau:

  • Nắm vững các định nghĩa và tính chất của vectơ.
  • Sử dụng đúng các quy tắc phép toán vectơ.
  • Vẽ hình minh họa để dễ dàng hình dung bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Kết luận

Hy vọng rằng với lời giải chi tiết và những kiến thức bổ ích trên, các em sẽ tự tin hơn trong việc giải bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều và các bài tập tương tự. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 10