Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải các bài tập trong mục I trang 25, 26 sách giáo khoa Toán 10 tập 1 - Cánh diều.
Chúng tôi cam kết cung cấp nội dung chính xác, đầy đủ và giúp bạn nắm vững kiến thức Toán học một cách hiệu quả.
a) Mỗi bát phương trình (1) và (2) có là bất phương trình bậc nhất hai ẩn không? b) Chỉ ra một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên. Chỉ ra một nghiệm của hệ bất phương trình sau
Cho hệ bất phương trình sau:
\(\left\{ \begin{array}{l}x - y < 3\left( 1 \right)\\x + 2y > - 2\left( 2 \right)\end{array} \right.\)
a) Mỗi bát phương trình (1) và (2) có là bất phương trình bậc nhất hai ẩn không?
b) Chỉ ra một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.
Phương pháp giải:
a) Nhận diện bất phương trình bậc nhất hai ẩn.
b) Tìm cặp số (x;y) thỏa mãn đồng thời cả (1) và (2)
Lời giải chi tiết:
a) Hai bất phương trình bài cho là bất phương trình bậc nhất hai ẩn.
b) (1; 1) là một nghiệm chung của hai BPT (1) và (2) vì:
Thay x=1;y=1 vào (1) ta được: 1-1<3(Luôn đúng)
Thay x=1; y=1 vào (2) ta được: 1+2.1>-2(Luôn đúng)
Chỉ ra một nghiệm của hệ bất phương trình sau: \(\left\{ \begin{array}{l}2x + y > 0\\x - 3y < 6\\x - y \ge - 4\end{array} \right.\)
Phương pháp giải:
Thay cặp số (1;1) vào 3 bất phương trình.
Lời giải chi tiết:
Thay x=1; y=1 vào 3 bất phương trình ta được:
\(2.1 + 1 > 0\) (Đúng)
\(1 - 3.1 < 6\) (Đúng)
\(1 - 1 \ge - 4\) (Đúng)
Vậy (1;1) là một nghiệm của hệ bất phương trình đã cho.
Cho hệ bất phương trình sau:
\(\left\{ \begin{array}{l}x - y < 3\left( 1 \right)\\x + 2y > - 2\left( 2 \right)\end{array} \right.\)
a) Mỗi bát phương trình (1) và (2) có là bất phương trình bậc nhất hai ẩn không?
b) Chỉ ra một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.
Phương pháp giải:
a) Nhận diện bất phương trình bậc nhất hai ẩn.
b) Tìm cặp số (x;y) thỏa mãn đồng thời cả (1) và (2)
Lời giải chi tiết:
a) Hai bất phương trình bài cho là bất phương trình bậc nhất hai ẩn.
b) (1; 1) là một nghiệm chung của hai BPT (1) và (2) vì:
Thay x=1;y=1 vào (1) ta được: 1-1<3(Luôn đúng)
Thay x=1; y=1 vào (2) ta được: 1+2.1>-2(Luôn đúng)
Chỉ ra một nghiệm của hệ bất phương trình sau: \(\left\{ \begin{array}{l}2x + y > 0\\x - 3y < 6\\x - y \ge - 4\end{array} \right.\)
Phương pháp giải:
Thay cặp số (1;1) vào 3 bất phương trình.
Lời giải chi tiết:
Thay x=1; y=1 vào 3 bất phương trình ta được:
\(2.1 + 1 > 0\) (Đúng)
\(1 - 3.1 < 6\) (Đúng)
\(1 - 1 \ge - 4\) (Đúng)
Vậy (1;1) là một nghiệm của hệ bất phương trình đã cho.
Mục I trong SGK Toán 10 tập 1 - Cánh diều tập trung vào các khái niệm cơ bản về tập hợp, các phép toán trên tập hợp và các tính chất của chúng. Việc nắm vững kiến thức này là nền tảng quan trọng để học tốt các phần tiếp theo của môn Toán.
Mục I bao gồm các bài tập rèn luyện về:
Sơ đồ Venn là một công cụ trực quan giúp chúng ta hiểu rõ hơn về mối quan hệ giữa các tập hợp. Để giải bài tập sử dụng sơ đồ Venn, bạn cần:
Để thực hiện các phép toán hợp, giao, hiệu của hai tập hợp, bạn cần:
Để chứng minh các tính chất của các phép toán trên tập hợp, bạn cần:
Để giải bài toán ứng dụng liên quan đến tập hợp, bạn cần:
Dưới đây là lời giải chi tiết cho từng bài tập trong mục I trang 25, 26 SGK Toán 10 tập 1 - Cánh diều:
Bài tập | Lời giải |
---|---|
Bài 1 | [Lời giải chi tiết bài 1] |
Bài 2 | [Lời giải chi tiết bài 2] |
Bài 3 | [Lời giải chi tiết bài 3] |
Bài 4 | [Lời giải chi tiết bài 4] |
Để học tập và giải bài tập Toán 10 hiệu quả, bạn nên:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải các bài tập trong mục I trang 25, 26 SGK Toán 10 tập 1 - Cánh diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!