Chào mừng các em học sinh đến với lời giải chi tiết bài 8 trang 98 SGK Toán 10 tập 1 – Cánh diều tại giaitoan.edu.vn. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập hiệu quả, giúp các em hiểu rõ kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em chinh phục môn Toán một cách dễ dàng.
Cho tam giác ABC có AB = 2,AC = 3,BAC = 60 Gọi M là trung điểm của đoạn thẳng BC.
Đề bài
Cho tam giác ABC có \(AB = 2,AC = 3,\widehat {BAC} = {60^o}.\) Gọi M là trung điểm của đoạn thẳng BC. Điểm D thỏa mãn \(\overrightarrow {AD} = \frac{7}{{12}}\overrightarrow {AC} .\)
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \)
b) Biểu diễn \(\overrightarrow {AM} ,\overrightarrow {BD} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \)
c) Chứng minh \(AM \bot BD\).
Phương pháp giải - Xem chi tiết
+) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng công thức \(\overrightarrow {AB} .\overrightarrow {AC} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos (\overrightarrow {AB} ,\overrightarrow {AC} ) = AB.AC.\cos \widehat {BAC}\)
+) M là trung điểm BC \( \Leftrightarrow \overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \) với điểm A bất kì.
+) \(AM \bot BD \Leftrightarrow \overrightarrow {AM} .\overrightarrow {BD} = 0\)
Lời giải chi tiết
a) \(\overrightarrow {AB} .\overrightarrow {AC} = 2.3.\cos \widehat {BAC} = 6.\cos {60^o} = 3\)
b)
Ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)(do M là trung điểm của BC)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)
+) \(\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} = \frac{7}{{12}}\overrightarrow {AC} - \overrightarrow {AB} \)
c) Ta có:
\(\begin{array}{l}\overrightarrow {AM} .\overrightarrow {BD} = \left( {\frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} } \right)\left( {\frac{7}{{12}}\overrightarrow {AC} - \overrightarrow {AB} } \right)\\ = \frac{7}{{24}}\overrightarrow {AB} .\overrightarrow {AC} - \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{7}{{24}}{\overrightarrow {AC} ^2} - \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} \\ = - \frac{1}{2}A{B^2} + \frac{7}{{24}}A{C^2} - \frac{5}{{24}}\overrightarrow {AB} .\overrightarrow {AC} \\ = - \frac{1}{2}{.2^2} + \frac{7}{{24}}{.3^2} - \frac{5}{{24}}.3\\ = 0\end{array}\)
\( \Rightarrow AM \bot BD\)
Bài 8 trang 98 SGK Toán 10 tập 1 – Cánh diều thuộc chương trình học về Vectơ trong mặt phẳng. Bài tập này yêu cầu học sinh vận dụng kiến thức về các phép toán vectơ, đặc biệt là phép cộng, trừ vectơ và phép nhân vectơ với một số thực để giải quyết các bài toán liên quan đến hình học.
Bài 8 bao gồm các câu hỏi và bài tập sau:
Để giải quyết bài 8 trang 98 SGK Toán 10 tập 1 – Cánh diều một cách hiệu quả, các em cần nắm vững các kiến thức sau:
(Nội dung câu 1 và lời giải chi tiết)
(Nội dung câu 2 và lời giải chi tiết)
(Nội dung câu 3 và lời giải chi tiết)
(Nội dung câu 4 và lời giải chi tiết)
Ví dụ: Cho tam giác ABC, với M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.
Lời giải:
Vì M là trung điểm của BC, ta có BM = MC. Do đó, BC = 2BM. Áp dụng quy tắc cộng vectơ, ta có:
AB + AC = AB + (AM + MC) = AB + AM + MC
Vì BM = MC, ta có MC = -BM. Do đó:
AB + AC = AB + AM - BM = (AB + BM) + AM = AM + AM = 2AM
Vậy, AB + AC = 2AM (đpcm).
Để củng cố kiến thức về bài 8 trang 98 SGK Toán 10 tập 1 – Cánh diều, các em có thể tự giải các bài tập tương tự sau:
Hy vọng rằng với lời giải chi tiết và phương pháp giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong quá trình học tập môn Toán 10. Chúc các em học tốt!