Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 103 SGK Toán 10 tập 2 – Cánh diều một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.
Lập phương trình đường tròn (C) trong mỗi trường hợp sau:
Đề bài
Lập phương trình đường tròn (C) trong mỗi trường hợp sau:
a) (C) có tâm \(I\left( { - 4;2} \right)\) và bán kính \(R = 3\)
b) \(\left( C \right)\) có tâm \(P\left( {3; - 2} \right)\) và đi qua điểm \(E\left( {1;4} \right)\)
c) \(\left( C \right)\)có tâm \(Q\left( {5; - 1} \right)\) và tiếp xúc với đường thẳng \(\Delta :3x + 4y - 1 = 0\)
d) \(\left( C \right)\) đi qua ba điểm \(A\left( { - 3;2} \right),B\left( { - 2; - 5} \right),D\left( {5;2} \right)\)
Phương pháp giải - Xem chi tiết
Đường tròn có tâm \(I\left( {a;b} \right)\) và bán kính R có phương trình là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\)
Lời giải chi tiết
a) Phương trình đường tròn (C) có tâm \(I\left( { - 4;2} \right)\) và bán kính \(R = 3\) là: \({\left( {x + 4} \right)^2} + {\left( {y - 2} \right)^2} = 9\).
b) Bán kính đường tròn là: \(R = PE = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {4 + 2} \right)}^2}} = \sqrt {40} \)
Phương trình đường tròn là: \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 40\).
c) Bán kính đường tròn là: \(R = \frac{{\left| {3.5 + 4.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\)
Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 1} \right)^2} = 4\)
d) Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = ID \Leftrightarrow I{A^2} = I{B^2} = I{D^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{D^2}\) nên: \(\left\{ \begin{array}{l}{\left( { - 3 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\\{\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 1\end{array} \right.\)
=> \(I\left( {1; - 1} \right)\) và \(R = IA = \sqrt {{{\left( 4 \right)}^2} + {{\left( { - 3} \right)}^2}} = 5\)
Vậy phương trình đường tròn đi qua 3 điểm A,B, D là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 25\)
Bài 7 trang 103 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ trong hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan. Việc giải bài tập này không chỉ giúp học sinh củng cố kiến thức lý thuyết mà còn rèn luyện kỹ năng giải quyết vấn đề thực tế.
Bài 7 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2
Lời giải:
Vì M là trung điểm của BC, ta có: overrightarrow{BM} =overrightarrow{MC}. Do đó, overrightarrow{BC} = 2overrightarrow{BM}.
Áp dụng quy tắc cộng vectơ, ta có: overrightarrow{AB} +overrightarrow{BC} =overrightarrow{AC}. Thay overrightarrow{BC} = 2overrightarrow{BM} vào, ta được: overrightarrow{AB} + 2overrightarrow{BM} =overrightarrow{AC}.
Suy ra: 2overrightarrow{BM} =overrightarrow{AC} -overrightarrow{AB}. Do đó: overrightarrow{BM} = (overrightarrow{AC} -overrightarrow{AB})/2.
Ta có: overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM} =overrightarrow{AB} + (overrightarrow{AC} -overrightarrow{AB})/2 = (2overrightarrow{AB} +overrightarrow{AC} -overrightarrow{AB})/2 = (overrightarrow{AB} +overrightarrow{AC})/2. Vậy, overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (đpcm).
Cho hình bình hành ABCD. Gọi I là giao điểm của hai đường chéo AC và BD. Chứng minh rằng: overrightarrow{IA} +overrightarrow{IC} =overrightarrow{0}
Lời giải:
Vì ABCD là hình bình hành, I là giao điểm của hai đường chéo AC và BD, nên I là trung điểm của AC và BD.
Do đó, overrightarrow{IA} = -overrightarrow{IC}. Suy ra: overrightarrow{IA} +overrightarrow{IC} =overrightarrow{0} (đpcm).
Vectơ có rất nhiều ứng dụng trong thực tế, bao gồm:
Hy vọng bài giải chi tiết bài 7 trang 103 SGK Toán 10 tập 2 – Cánh diều này sẽ giúp bạn hiểu rõ hơn về vectơ và các ứng dụng của nó. Chúc bạn học tập tốt!