Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục V trang 8 SGK Toán 10 tập 1 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập toán học.
Mục tiêu của chúng tôi là hỗ trợ các em học tập hiệu quả, tiết kiệm thời gian và đạt kết quả tốt nhất trong môn Toán.
Phát biểu mệnh đề Q=>P và xác định tính đúng sai của hai mệnh đề P=>Q và Q=>P. Nếu cả hai mệnh đề trên đều đúng, hãy phát biểu mệnh đề tương đương.
Cho tam giác ABC. Từ các mệnh đề:
P: “Tam giác ABC đều”
Q: “Tam giác ABC cân và có một góc bằng \({60^o}\)”,
Hãy phát biểu hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\) và xác định tính đúng sai của mệnh đề đó.
Nếu cả hai mệnh đề trên đều đúng, hãy phát biểu mệnh đề tương đương.
Phương pháp giải:
+) Mệnh đề kéo theo \(P \Rightarrow Q\) có dạng “Nếu P thì Q”, “P kéo theo Q”, “P suy ra Q”, “Vì P nên Q”.
+) Mệnh đề tương đương \(P \Leftrightarrow Q\) có thể phát biểu ở những dạng sau:
“P tương đương Q”, “P là điều kiện cần và đủ để có Q”, “P khi và chỉ khi Q”, “P nếu và chỉ nếu”
Lời giải chi tiết:
+) Mệnh đề \(P \Rightarrow Q\) là: “Vì tam giác ABC đều nên tam giác ABC cân và có một góc bằng \({60^o}\)”.
+) Mệnh đề \(Q \Rightarrow P\) là: “Tam giác ABC cân và có một góc bằng \({60^o}\) suy ra tam giác ABC đều”.
Dễ thấy cả hai mệnh đề trên đều đúng.
+) Mệnh đề tương đương: (dùng một trong các cách sau:)
“Tam giác ABC đều tương đương tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều là điều kiện cần và đủ để có tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều khi và chỉ khi tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều nếu và chỉ nếu tam giác ABC cân và có một góc bằng \({60^o}\)”
Cho tam giác ABC. Xét mệnh đề dạng \(P \Rightarrow Q\) như sau:
“Nếu tam giác ABC vuông tại A thì tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”.
Phát biểu mệnh đề \(Q \Rightarrow P\) và xác định tính đúng sai của hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\).
Phương pháp giải:
Viết mệnh đề kéo theo \(Q \Rightarrow P\), sử dụng một trong các dạng “Nếu Q thì P”, “Q kéo theo P”, “Q suy ra P”, “Vì Q nên P”.
Xét tính đúng sai của hai mệnh đề.
Lời giải chi tiết:
P: “tam giác ABC vuông tại A”
Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”
+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”
+) Từ định lí Pytago, ta có:
Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)
Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.
Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.
Cho tam giác ABC. Xét mệnh đề dạng \(P \Rightarrow Q\) như sau:
“Nếu tam giác ABC vuông tại A thì tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”.
Phát biểu mệnh đề \(Q \Rightarrow P\) và xác định tính đúng sai của hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\).
Phương pháp giải:
Viết mệnh đề kéo theo \(Q \Rightarrow P\), sử dụng một trong các dạng “Nếu Q thì P”, “Q kéo theo P”, “Q suy ra P”, “Vì Q nên P”.
Xét tính đúng sai của hai mệnh đề.
Lời giải chi tiết:
P: “tam giác ABC vuông tại A”
Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”
+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”
+) Từ định lí Pytago, ta có:
Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)
Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.
Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.
Cho tam giác ABC. Từ các mệnh đề:
P: “Tam giác ABC đều”
Q: “Tam giác ABC cân và có một góc bằng \({60^o}\)”,
Hãy phát biểu hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\) và xác định tính đúng sai của mệnh đề đó.
Nếu cả hai mệnh đề trên đều đúng, hãy phát biểu mệnh đề tương đương.
Phương pháp giải:
+) Mệnh đề kéo theo \(P \Rightarrow Q\) có dạng “Nếu P thì Q”, “P kéo theo Q”, “P suy ra Q”, “Vì P nên Q”.
+) Mệnh đề tương đương \(P \Leftrightarrow Q\) có thể phát biểu ở những dạng sau:
“P tương đương Q”, “P là điều kiện cần và đủ để có Q”, “P khi và chỉ khi Q”, “P nếu và chỉ nếu”
Lời giải chi tiết:
+) Mệnh đề \(P \Rightarrow Q\) là: “Vì tam giác ABC đều nên tam giác ABC cân và có một góc bằng \({60^o}\)”.
+) Mệnh đề \(Q \Rightarrow P\) là: “Tam giác ABC cân và có một góc bằng \({60^o}\) suy ra tam giác ABC đều”.
Dễ thấy cả hai mệnh đề trên đều đúng.
+) Mệnh đề tương đương: (dùng một trong các cách sau:)
“Tam giác ABC đều tương đương tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều là điều kiện cần và đủ để có tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều khi và chỉ khi tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều nếu và chỉ nếu tam giác ABC cân và có một góc bằng \({60^o}\)”
Mục V trong SGK Toán 10 tập 1 - Cánh diều tập trung vào các bài tập về tập hợp số thực, bao gồm các khái niệm cơ bản như số tự nhiên, số nguyên, số hữu tỉ, số vô tỉ, và các phép toán trên chúng. Việc nắm vững kiến thức này là nền tảng quan trọng cho các chương trình học toán ở các lớp trên.
Dưới đây là hướng dẫn giải chi tiết từng bài tập trong Mục V trang 8 SGK Toán 10 tập 1 - Cánh diều:
Bài tập này yêu cầu học sinh xác định xem một số cụ thể thuộc tập hợp số nào (số tự nhiên, số nguyên, số hữu tỉ, số vô tỉ, số thực). Để giải bài tập này, học sinh cần nắm vững định nghĩa của từng loại tập hợp số.
Ví dụ: Số -3 thuộc tập hợp số nguyên và tập hợp số thực.
Bài tập này yêu cầu học sinh thực hiện các phép toán cộng, trừ, nhân, chia trên các số thực. Học sinh cần tuân thủ các quy tắc về thứ tự thực hiện các phép toán.
Ví dụ: 2 + 3 * 4 = 2 + 12 = 14
Bài tập này yêu cầu học sinh áp dụng kiến thức về tập hợp số để giải các bài toán thực tế. Học sinh cần phân tích bài toán, xác định các yếu tố liên quan đến tập hợp số, và sử dụng các phép toán phù hợp để tìm ra lời giải.
Khi giải bài tập về tập hợp số, học sinh cần lưu ý những điều sau:
Công thức | Mô tả |
---|---|
a + b = b + a | Tính chất giao hoán của phép cộng |
a * b = b * a | Tính chất giao hoán của phép nhân |
a + (b + c) = (a + b) + c | Tính chất kết hợp của phép cộng |
a * (b * c) = (a * b) * c | Tính chất kết hợp của phép nhân |
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải các bài tập trong Mục V trang 8 SGK Toán 10 tập 1 - Cánh diều. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!