Logo Header
  1. Môn Toán
  2. Giải bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều

Giải bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều

Giải bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 10. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.

Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có

Đề bài

Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có \(M\left( {2;1} \right),N\left( { - 1;3} \right),P\left( {4;2} \right)\)

a) Tìm tọa độ của các vectơ \(\overrightarrow {OM} ,\overrightarrow {MN} ,\overrightarrow {MP} \)

b) Tính tích vô hướng \(\overrightarrow {MN} .\overrightarrow {MP} \)

c) Tính độ dài các đoạn thẳng \(MN,MP\)

d) Tính \(\cos \widehat {MNP}\)

e) Tìm tọa độ trung điểm I của NP và trọn tâm G của tam giác MNP

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều 1

a) \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A}} \right)\)

b) Với hai vectơ \(\overrightarrow u = \left( {{x_1},{y_1}} \right)\), \(\overrightarrow v = \left( {{x_2},{y_2}} \right)\)đều khác vectơ không, ta có:\(\overrightarrow u .\overrightarrow v = {x_1}.{x_2} + {y_1}.{y_2}\)

c) Nếu \(\overrightarrow a = \left( {x;y} \right) \Rightarrow \left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2}} \)

d) Ta có: \(\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right)} \right| = \left| {\frac{{\overrightarrow {{u_1}} .\overrightarrow {{u_2}} }}{{\left| {\overrightarrow {{u_1}} } \right|\left| {\overrightarrow {{u_2}} } \right|}}} \right| = \frac{{{x_1}.{x_2} + {y_1}.{y_2}}}{{\sqrt {x_1^2 + y_1^2} .\sqrt {x_2^2 + y_2^2} }}\)

e) Trung điểm M của đoạn thẳng AB có tọa độ là: \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\) 

 Tìm trọng tâm của hai tam giác bằng công thức tính trọng tâm: G là trọng tâm tam giác ABC thì tọa độ G là: \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

Lời giải chi tiết

a) Ta có: \(\overrightarrow {OM} = \left( {2;1} \right),\overrightarrow {MN} = \left( { - 3;2} \right),\overrightarrow {MP} = \left( {2;1} \right)\)

b) Ta có: \(\overrightarrow {MN} .\overrightarrow {MP} = - 3.2 + 2.1 = - 4\)

c) Ta có: \(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}} = \sqrt {13} ,MP = \left| {\overrightarrow {MP} } \right| = \sqrt {{2^2} + {1^2}} = \sqrt 5 \)

d) Ta có: \(\cos \widehat {MNP} = \frac{{\overrightarrow {MN} .\overrightarrow {MP} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {MP} } \right|}} = \frac{- 4}{{\sqrt {13} .\sqrt 5 }} = \frac{- 4}{{\sqrt {65} }}\)

e) Tọa độ trung điểm I của đoạn NP là: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_N} + {x_P}}}{2} = \frac{3}{2}\\{y_I} = \frac{{{y_N} + {y_P}}}{2} = \frac{5}{2}\end{array} \right. \Leftrightarrow I\left( {\frac{3}{2};\frac{5}{2}} \right)\)

Tọa độ trọng tâm G của tam giác MNP là: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_M} + {x_N} + {x_P}}}{3}\\{y_G} = \frac{{{y_M} + {y_N} + {y_P}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{5}{3}\\{y_C} = 2\end{array} \right. \Leftrightarrow G\left( {\frac{5}{3};2} \right)\)

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng tài liệu toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều: Tổng quan

Bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất liên quan.

Nội dung bài tập

Bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều thường bao gồm các dạng bài tập sau:

  • Tìm vectơ: Xác định các vectơ trong hình vẽ hoặc từ các điểm cho trước.
  • Thực hiện phép toán vectơ: Cộng, trừ vectơ, tính tích của một số với vectơ.
  • Chứng minh đẳng thức vectơ: Sử dụng các tính chất của vectơ để chứng minh các đẳng thức cho trước.
  • Ứng dụng vectơ vào hình học: Giải các bài toán liên quan đến hình học phẳng, sử dụng vectơ để chứng minh tính chất của các hình.

Lời giải chi tiết bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều. (Lưu ý: Nội dung lời giải chi tiết sẽ được trình bày cụ thể cho từng câu hỏi trong bài tập. Do giới hạn độ dài, chúng tôi sẽ tập trung vào phương pháp giải và các bước thực hiện chính.)

Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.

Lời giải:

Ta có: AM = AB + BM. Vì M là trung điểm của BC nên BM = 1/2 BC. Do đó, AM = AB + 1/2 BC = AB + 1/2 (AC - AB) = AB + 1/2 AC - 1/2 AB = 1/2 AB + 1/2 AC = (1/2)(AB + AC).

Mẹo giải bài tập vectơ

  • Vẽ hình: Vẽ hình minh họa giúp bạn hình dung rõ hơn về bài toán và các vectơ liên quan.
  • Sử dụng các tính chất của vectơ: Nắm vững các tính chất của vectơ như tính chất giao hoán, tính chất kết hợp, tính chất phân phối.
  • Biến đổi vectơ: Sử dụng các phép biến đổi vectơ để đưa bài toán về dạng đơn giản hơn.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập vectơ, bạn có thể tham khảo các bài tập tương tự sau:

  1. Bài 1: Cho hình bình hành ABCD. Tìm vectơ AB + AD.
  2. Bài 2: Cho tam giác ABC. Gọi G là trọng tâm của tam giác. Tìm vectơ AG theo vectơ AB và AC.
  3. Bài 3: Chứng minh rằng nếu AB = CD thì AC = BD.

Tài liệu tham khảo

Để học tập môn Toán 10 hiệu quả hơn, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 10 tập 2 – Cánh diều
  • Sách bài tập Toán 10 tập 2 – Cánh diều
  • Các trang web học toán online uy tín như giaitoan.edu.vn

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 5 trang 103 SGK Toán 10 tập 2 – Cánh diều một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 10