Logo Header
  1. Môn Toán
  2. Giải bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều

Giải bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều

Giải bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều. Bài viết này sẽ cung cấp cho các em phương pháp giải bài tập một cách dễ hiểu, nhanh chóng và chính xác.

Giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em giải quyết mọi khó khăn trong môn Toán.

Để tính khoảng cách giữa hai địa điểm A và B mà ta không thể đi trực tiếp từ A đến B (hai địa điểm nằm ở hai bên bờ một hồ nước, một đầm lầy, …), người ta tiến hành như sau: Chọn một địa điểm C sao cho ta đo được các khoảng cách AC, CB và góc ACB.

Đề bài

Để tính khoảng cách giữa hai địa điểm A và B mà ta không thể đi trực tiếp từ A đến B (hai địa điểm nằm ở hai bên bờ một hồ nước, một đầm lầy, …), người ta tiến hành như sau: Chọn một địa điểm C sao cho ta đo được các khoảng cách AC, CB và góc ACB. Sau khi đo, ta nhận được: AC = 1 km, CB = 800 m và \(\widehat {ACB} = {105^o}\) (Hình 31). Tính khoảng cách AB (làm tròn kết quả đến hàng phần mười đơn vị mét).

Giải bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều 2

Bước 1: Đổi độ dài AC, CB về cùng đơn vị mét.

Bước 2: Tính AB: Áp dụng định lí cosin trong tam giác BAC: \(A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos C\)

Lời giải chi tiết

Đổi: 1 km = 1000 m. Do đó AC = 1000 m.

Áp dụng định lí cosin trong tam giác ABC ta có:

\(A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos C\)

\(\begin{array}{l} \Rightarrow A{B^2} = {1000^2} + {800^2} - 2.1000.800.\cos {105^o}\\ \Rightarrow A{B^2} \approx 2054110,5\\ \Rightarrow AB \approx 1433,2\end{array}\)

Vậy khoảng cách AB là 1433,2 m.

Xây dựng nền tảng Toán THPT vững vàng từ hôm nay! Đừng bỏ lỡ Giải bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều đặc sắc thuộc chuyên mục sgk toán 10 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chương trình Toán lớp 10, đây chính là "kim chỉ nam" giúp các em tối ưu hóa ôn luyện, củng cố kiến thức cốt lõi và chuẩn bị hành trang vững chắc cho tương lai. Phương pháp học trực quan, logic sẽ mang lại hiệu quả vượt trội trên lộ trình chinh phục đại học!

Giải bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều: Tổng quan

Bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều thuộc chương trình học Toán 10, tập trung vào việc vận dụng các kiến thức về vectơ để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải nắm vững các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.

Nội dung bài tập

Bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều thường bao gồm các dạng bài tập sau:

  • Dạng 1: Xác định các vectơ trong hình.
  • Dạng 2: Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số).
  • Dạng 3: Chứng minh đẳng thức vectơ.
  • Dạng 4: Giải các bài toán liên quan đến vectơ trong hình học phẳng.

Lời giải chi tiết bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều

Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng phần của bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng, và sử dụng hình vẽ minh họa nếu cần thiết. Ví dụ:)

Ví dụ minh họa (Giả định nội dung bài tập cụ thể)

Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng AB + AC = 2AM.

Lời giải:

  1. Vì M là trung điểm của BC, ta có BM = MC.
  2. Áp dụng quy tắc cộng vectơ, ta có: AB + BC = AC.
  3. Suy ra BC = AC - AB.
  4. BM = MC, ta có BM = BC = AC - AB.
  5. Áp dụng quy tắc cộng vectơ, ta có: AM = AB + BM = AB + AC - AB = AB + AC.
  6. Do đó, 2AM = AB + AC (đpcm).

Mở rộng và bài tập tương tự

Để củng cố kiến thức về vectơ và các phép toán vectơ, các em có thể tự giải thêm các bài tập tương tự trong SGK Toán 10 tập 1 – Cánh diều hoặc các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin hơn khi giải các bài tập khó.

Lưu ý khi giải bài tập về vectơ

  • Luôn vẽ hình để hình dung rõ ràng các vectơ và mối quan hệ giữa chúng.
  • Nắm vững các quy tắc cộng, trừ vectơ và tích của một số với vectơ.
  • Sử dụng các tính chất của vectơ để đơn giản hóa bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Kết luận

Bài 6 trang 77 SGK Toán 10 tập 1 – Cánh diều là một bài tập quan trọng giúp các em hiểu sâu hơn về vectơ và các ứng dụng của chúng trong hình học. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, các em sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả.

Tài liệu, đề thi và đáp án Toán 10