Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục III trang 99, 100 SGK Toán 10 tập 2 - Cánh diều. Tại giaitoan.edu.vn, chúng tôi cung cấp các bài giải được trình bày rõ ràng, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Mục tiêu của chúng tôi là hỗ trợ các em học tập hiệu quả, đồng thời cung cấp một nguồn tài liệu học tập đáng tin cậy. Hãy cùng khám phá lời giải chi tiết ngay sau đây!
Viết phương trình các parabol sau đây dưới dạng chính tắc:
Viết phương trình các parabol sau đây dưới dạng chính tắc:
a) \(x = \frac{{{y^2}}}{4}\)
b) \(x-y^2=0\)
Lời giải chi tiết:
a) \(x = \frac{{{y^2}}}{4} \Leftrightarrow {y^2} = 4x\)
Vậy dạng chính tắc của parabol là: \({y^2} = 4x\)
b) \(x - {y^2} = 0 \Leftrightarrow {y^2} = x\)
Vậy dạng chính tắc của parabol là: \({y^2} = x\)
Lấy đường thẳng \(\Delta \)và một điểm F không thuộc \(\Delta \). Lấy một ê ke ABC (vuông ở A) và một đoạn dây không đàn hồi, có độ dài bằng AB. Đính một đầu dây vào điểm F, đầu kia vào đỉnh B của ê ke. Đặt ê ke sao cho cạnh AC nằm trên \(\Delta \), lấy đầu bút chì (kí hiệu là điểm M) ép sát sợi dây vào cạnh AB và giữ căng sợi dây. Lúc này, sợi dây chính là đường gấp khúc BMF. Cho cạnh AC của ê ke trượt trên \(\Delta \) (Hình 55). Khi đó, đầu bút chì M sẽ vạch nên một đường mà ta gọi là đường parabol. Khi M thay đổi, có nhận xét gì về khoảng cách từ M đến F và khoảng cách từ M đến đường thẳng \(\Delta \)?
Lời giải chi tiết:
Khi M thay đổi, ta có: \(MA + MB = MF + MB\left( { = AB} \right)\). Do đó \(MA = MF\).
Viết phương trình các parabol sau đây dưới dạng chính tắc:
a) \(x = \frac{{{y^2}}}{4}\)
b) \(x-y^2=0\)
Lời giải chi tiết:
a) \(x = \frac{{{y^2}}}{4} \Leftrightarrow {y^2} = 4x\)
Vậy dạng chính tắc của parabol là: \({y^2} = 4x\)
b) \(x - {y^2} = 0 \Leftrightarrow {y^2} = x\)
Vậy dạng chính tắc của parabol là: \({y^2} = x\)
Lấy đường thẳng \(\Delta \)và một điểm F không thuộc \(\Delta \). Lấy một ê ke ABC (vuông ở A) và một đoạn dây không đàn hồi, có độ dài bằng AB. Đính một đầu dây vào điểm F, đầu kia vào đỉnh B của ê ke. Đặt ê ke sao cho cạnh AC nằm trên \(\Delta \), lấy đầu bút chì (kí hiệu là điểm M) ép sát sợi dây vào cạnh AB và giữ căng sợi dây. Lúc này, sợi dây chính là đường gấp khúc BMF. Cho cạnh AC của ê ke trượt trên \(\Delta \) (Hình 55). Khi đó, đầu bút chì M sẽ vạch nên một đường mà ta gọi là đường parabol. Khi M thay đổi, có nhận xét gì về khoảng cách từ M đến F và khoảng cách từ M đến đường thẳng \(\Delta \)?
Lời giải chi tiết:
Khi M thay đổi, ta có: \(MA + MB = MF + MB\left( { = AB} \right)\). Do đó \(MA = MF\).
Mục III trong SGK Toán 10 tập 2 - Cánh diều tập trung vào việc ứng dụng các kiến thức về vectơ trong hình học. Cụ thể, các bài tập trong mục này thường liên quan đến việc xác định tọa độ của vectơ, thực hiện các phép toán vectơ (cộng, trừ, nhân với một số thực), và sử dụng vectơ để chứng minh các tính chất hình học.
Bài tập này yêu cầu học sinh xác định tọa độ của một vectơ dựa trên tọa độ của các điểm đầu và điểm cuối của vectơ đó. Để giải bài tập này, học sinh cần nắm vững công thức tính tọa độ của vectơ: AB = (xB - xA; yB - yA), trong đó A(xA; yA) và B(xB; yB).
Bài tập này yêu cầu học sinh thực hiện các phép toán cộng, trừ vectơ, và nhân vectơ với một số thực. Để giải bài tập này, học sinh cần nắm vững các quy tắc sau:
Bài tập này yêu cầu học sinh sử dụng các kiến thức về vectơ để chứng minh các tính chất hình học, chẳng hạn như chứng minh hai đường thẳng song song, chứng minh hai tam giác bằng nhau, hoặc chứng minh một điểm nằm trên một đường thẳng. Để giải bài tập này, học sinh cần kết hợp kiến thức về vectơ với kiến thức về hình học phẳng.
Dưới đây là lời giải chi tiết từng bài tập trong mục III trang 99, 100 SGK Toán 10 tập 2 - Cánh diều:
Để giải nhanh các bài tập về vectơ, học sinh nên:
Để củng cố kiến thức, học sinh có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng với lời giải chi tiết và các mẹo giải nhanh trên đây, các em học sinh đã có thể tự tin giải các bài tập trong mục III trang 99, 100 SGK Toán 10 tập 2 - Cánh diều. Chúc các em học tập tốt!
Bài tập | Độ khó | Lời giải |
---|---|---|
Bài 1 | Dễ | Chi tiết tại [link] |
Bài 2 | Trung bình | Chi tiết tại [link] |
Bài 3 | Khó | Chi tiết tại [link] |