Logo Header
  1. Môn Toán
  2. Giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức một cách nhanh chóng và hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và đạt kết quả cao trong môn Toán.

Một nhà sản xuất cần làm ra những chiếc bình có dạng hình trụ với dung tích \(1\;000c{m^3}\). Mặt trên và mặt dưới của bình được làm bằng vật liệu có giá 1,2 nghìn đồng/\(c{m^2}\), trong khi mặt bên của bình được làm bằng vật liệu có giá 0,75 nghìn đồng/\(c{m^2}\). Tìm các kích thước của bình để chi phí vật liệu sản xuất mỗi chiếc bình là nhỏ nhất.

Đề bài

Một nhà sản xuất cần làm ra những chiếc bình có dạng hình trụ với dung tích \(1\;000c{m^3}\). Mặt trên và mặt dưới của bình được làm bằng vật liệu có giá 1,2 nghìn đồng/\(c{m^2}\), trong khi mặt bên của bình được làm bằng vật liệu có giá 0,75 nghìn đồng/\(c{m^2}\). Tìm các kích thước của bình để chi phí vật liệu sản xuất mỗi chiếc bình là nhỏ nhất.

Phương pháp giải - Xem chi tiếtGiải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).

Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):

1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.

2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).

3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên.

Ta có: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

Lời giải chi tiết

Gọi bán kính đáy của bình là x (cm, \(x > 0\))

Chiều cao của bình là: \(\frac{{1000}}{{\pi .{x^2}}}\left( {cm} \right)\)

Chi phí để sản xuất một chiếc bình là: \(T\left( x \right) = 2.1,2.\pi .{x^2} + 0,75.\frac{{2000}}{x} = 2,4\pi .{x^2} + \frac{{1500}}{x}\) (nghìn đồng)

Để chi phí sản xuất mỗi chiếc bình là thấp nhất thì T(x) là nhỏ nhất.

\(T'\left( x \right) = 4,8\pi x - \frac{{1500}}{{{x^2}}},T'\left( x \right) = 0 \Leftrightarrow x = \sqrt[3]{{\frac{{625}}{{2\pi }}}}\) (thỏa mãn)

Bảng biến thiên:

Giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức 2

Để chi phí sản xuất mỗi chiếc bình là nhỏ nhất thì bán kính đáy của bình là \(\sqrt[3]{{\frac{{625}}{{2\pi }}}}cm\) và chiều cao của bình là: \(\frac{{1000}}{{\pi .{{\left( {\sqrt[3]{{\frac{{625}}{{2\pi }}}}} \right)}^2}}}\left( {cm} \right)\)

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức: Tổng quan

Bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này thường liên quan đến việc xác định tính đơn điệu của hàm số, tìm khoảng đồng biến, nghịch biến và cực trị của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức về đạo hàm, điều kiện cần và đủ để hàm số đạt cực trị, và các phương pháp xét dấu đạo hàm.

Phương pháp giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức

  1. Xác định tập xác định của hàm số: Kiểm tra xem hàm số có những điều kiện gì về tập xác định hay không.
  2. Tính đạo hàm cấp nhất: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm f'(x) của hàm số.
  3. Tìm các điểm tới hạn: Giải phương trình f'(x) = 0 để tìm các điểm mà tại đó đạo hàm bằng 0. Các điểm này là các điểm nghi ngờ là cực trị.
  4. Xét dấu đạo hàm: Lập bảng xét dấu đạo hàm f'(x) trên các khoảng xác định bởi các điểm tới hạn.
  5. Kết luận về tính đơn điệu và cực trị:
    • Nếu f'(x) > 0 trên một khoảng, hàm số đồng biến trên khoảng đó.
    • Nếu f'(x) < 0 trên một khoảng, hàm số nghịch biến trên khoảng đó.
    • Nếu f'(x) đổi dấu từ dương sang âm tại một điểm x0, hàm số đạt cực đại tại x0.
    • Nếu f'(x) đổi dấu từ âm sang dương tại một điểm x0, hàm số đạt cực tiểu tại x0.

Ví dụ minh họa giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức

Giả sử bài tập 1.15 yêu cầu xét tính đơn điệu và cực trị của hàm số y = x3 - 3x2 + 2.

  1. Tập xác định: Hàm số xác định trên R.
  2. Đạo hàm cấp nhất: y' = 3x2 - 6x.
  3. Điểm tới hạn: 3x2 - 6x = 0 => 3x(x - 2) = 0 => x = 0 hoặc x = 2.
  4. Xét dấu đạo hàm:
    x-∞02+∞
    y'+-+
    yĐồng biếnNghịch biếnĐồng biến
  5. Kết luận:
    • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
    • Hàm số nghịch biến trên khoảng (0; 2).
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu ý khi giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức

  • Luôn kiểm tra lại các bước tính đạo hàm để tránh sai sót.
  • Sử dụng bảng xét dấu đạo hàm một cách cẩn thận để xác định chính xác khoảng đồng biến, nghịch biến và cực trị.
  • Nắm vững các định nghĩa và tính chất của đạo hàm để hiểu rõ bản chất của bài toán.
  • Thực hành nhiều bài tập tương tự để rèn luyện kỹ năng giải toán.

Tài liệu tham khảo

Ngoài SGK Toán 12 tập 1 - Kết nối tri thức, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video hướng dẫn giải bài tập Toán 12 trên YouTube.

Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài tập 1.15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12